9 research outputs found

    The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?

    Get PDF
    We present a wide dataset of -ray, X-ray, UVOIR, and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived reverse shock and forward shock fits the temporal and spectral properties of GRB100814 the best

    Effect of Alloy Composition and Crystal Face of Pt-Skin/Pt<sub>100–<i>x</i></sub>Co<sub><i>x</i></sub> [(111), (100), and (110)] Single Crystal Electrodes on the Oxygen Reduction Reaction Activity

    No full text
    We have examined and compared for the first time the oxygen reduction reaction (ORR) activities at a series of (111), (100), and (110) faces of Pt<sub>100–<i>x</i></sub>­Co<sub><i>x</i></sub> single crystals as a function of Co content <i>x</i> with rotating disk electrodes in air-saturated 0.1 M HClO<sub>4</sub> solution. The low energy electron diffraction and low energy ion scattering indicated that the topmost surfaces of Pt–Co­(111), (100), and (110) have well-defined (1×1) Pt-skin layers as a result of annealing in pure H<sub>2</sub>. Among the three faces examined, the effect of Co content was found to be the most dramatic for the (111) face: specifically, the <i>j</i><sub>k</sub> values on the Pt-skin/​Pt–Co­(111) electrodes increased greatly as <i>x</i> increased and reached a maximum value at <i>x</i> = 27 atom %, which is ca. 27 times larger than that for pure Pt(111). On the Pt-skin/​Pt<sub>100–<i>x</i></sub>­Co<sub><i>x</i></sub>­(110) electrodes, the <i>j</i><sub>k</sub> values reached a maximum at <i>x</i> = 18 atom %, which is 4 times larger than that of pure Pt(110). Unlike other faces, the Pt-skin/​Pt–Co­(100) electrodes exhibited a weak dependence of <i>j</i><sub>k</sub> on the Co content <i>x</i>. The overall order of activity was (100) < (110) ≪ (111), so that the enhancement factor for <i>j</i><sub>k</sub> on the (111) face was unique, being significantly larger than the others. Our results can provide an important insight for the significant increase in the ORR activity depending not only on the alloy composition but also on the atomic arrangement of the exposed Pt-skin surface

    Additional file 1: of Association between health risks and frailty in relation to the degree of housing damage among elderly survivors of the great East Japan earthquake

    No full text
    Table S1. The Kihon Checklist in Japan. The checklist included a multidimensional 20-item index concerning lifestyle, motor abilities, nutrition, oral function, seclusion, and forgetfulness. (PDF 130 kb

    The Swift gamma-ray burst GRB 050422

    Full text link
    We describe observations of GRB 050422, a Swift-discovered gamma-ray burst. The prompt gamma-ray emission had a T90 duration of 59 s and was multipeaked, with the main peak occurring at T+ 53 s. Swift was able to follow the X-ray afterglow within 100 s of the burst trigger. The X-ray light curve, which shows a steep early decline, can be described by a broken power law with an initial decay slope of α1∼ 5.0, a break time tb∼ 270 s and a post-break decay slope of α2∼ 0.9, when the zero time of the X-ray emission is taken to be the burst trigger time. However, if the zero time is shifted to coincide with the onset of main peak in the gamma-ray light curve then the initial decay slope is shallower with α1∼ 3.2. The initial gamma-ray spectrum can be modelled by a power law with a spectral index of βB= 0.50 ± 0.19. However, the early time X-ray spectrum is significantly steeper than this and requires a spectral index of βX= 2.33+0.58−0.55. In comparison with other Swift bursts, GRB 050422 was unusually X-ray faint, had a soft X-ray spectrum, and had an unusually steep early X-ray decline. Even so, its behaviour can be accommodated by standard models. The combined BAT/XRT light curve indicates that the initial, steeply declining, X-ray emission is related to the tail of the prompt gamma-ray emission. The shallower decay seen after the break is consistent with the standard afterglow model

    Varying linear polarisation in the dust-free GRB 210610B

    No full text
    Long gamma ray bursts (GRBs) are produced by the collapse of some very massive stars, which emit ultra-relativistic jets. When the jets collide with the interstellar medium they decelerate and generate the so-called afterglow emission, which has been observed to be polarised. In this work we study the polarimetric evolution of GRB 210610B afterglow, at z=1.1341. This allows to evaluate the role of geometric and/or magnetic mechanisms in the GRB afterglow polarisation. We observed GRB 210610B using imaging polarimetry with CAFOS on the 2.2 m Calar Alto Telescope and FORS2 on the 4 × 8.1 m Very Large Telescope. Complementary optical spectroscopy was obtained with OSIRIS on the 10.4 m Gran Telescopio Canarias. We study the GRB light-curve from X-rays to optical bands and the Spectral Energy Distribution (SED). This allows us to strongly constrain the line-of-sight extinction. Finally, we study the GRB host galaxy using optical/NIR data to fit the SED and derive its integrated properties. GRB 210610B had a bright afterglow with a negligible line-of-sight extinction. Polarimetry was obtained at three epochs: during an early plateau phase, at the time when the light curve breaks, and after the light curve steepened. We observe an initial polarisation of ∼4% that goes to zero at the time of the break, and then increases again to ∼2% with a change of the position angle of 54±9 deg. The spectrum show features with very low equivalent widths, indicating a small amount of material in the line-of-sight within the host. The lack of dust and the low amount of material on the line-of-sight to GRB 210610B allow us to study the intrinsic polarisation of the GRB optical afterglow. We find the GRB polarisation signals are consistent with ordered magnetic fields in refreshed shock or/and hydrodynamics-scale turbulent fields in the forward shock.</p

    Anatomy of a dark burst - The afterglow of GRB 060108

    Get PDF
    We present a multiwavelength study of GRB 060108 – the 100th gamma-ray burst discovered by Swift. The X-ray flux and light curve (three segments plus a flare) detected with the X-ray Telescope are typical of Swift long bursts. We report the discovery of a faint optical afterglow detected in deep BVRi′-band imaging obtained with the Faulkes Telescope North beginning 2.75 min after the burst. The afterglow is below the detection limit of the Ultraviolet/Optical Telescope within 100 s of the burst, while is evident in K-band images taken with the United Kingdom Infrared Telescope 45 min after the burst. The optical light curve is sparsely sampled. Observations taken in the R and i′ bands can be fitted either with a single power-law decay in flux, F(t) ∝t−α where α= 0.43 ± 0.08, or with a two-segment light curve with an initial steep decay α1 < 0.88 ± 0.2, flattening to a slope α2∼ 0.31 ± 0.12. A marginal evidence for rebrightening is seen in the i′ band. Deep R-band imaging obtained ∼12 d post-burst with the Very Large Telescope reveals a faint, extended object (R∼ 23.5 mag) at the location of the afterglow. Although the brightness is compatible with the extrapolation of the slow decay with index α2, significant flux is likely due to a host galaxy. This implies that the optical light curve had a break before 12 d, akin to what observed in the X-rays. We derive the maximum photometric redshift z < 3.2 for GRB 060108. We find that the spectral energy distribution at 1000 s after the burst, from the optical to the X-ray range, is best fitted by a simple power law, Fν∝ν−β, with βOX= 0.54 and a small amount of extinction. The optical to X-ray spectral index (βOX) confirms GRB 060108 to be one of the optically darkest bursts detected. Our observations rule out a high redshift as the reason for the optical faintness of GRB 060108. We conclude that a more likely explanation is a combination of an intrinsic optical faintness of the burst, a hard optical to X-ray spectrum and a moderate amount of extinction in the host galaxy

    The circumburst environment of a FRED GRB: Study of the prompt emission and X-ray/optical afterglow of GRB 051111

    Full text link
    Aims.We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB 051111 and discuss its properties in the context of current fireball models. Methods.The detection of GRB 051111 by the Burst Alert Telescope on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. Results.The prompt γ\gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with α1=0.35{\alpha}_1=0.35 to α2=1.35{\alpha}_2=1.35 and a break time around 12 min after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the γ\gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some α\alpha elements such as oxygen, [O/Zn] = 0.7 ±\pm 0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 min after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium

    Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    Get PDF
    The first direct detection of gravitational waves was made in late 2015 with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. No counterparts were identified, which is in line with expectations given that the events were classified as black hole - black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from September 2015 to January 2016. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (~degrees) fields-of-view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae
    corecore