794 research outputs found

    Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    Full text link
    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette

    Signatures of few-body resonances in finite volume

    Get PDF
    We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio

    The Dynamics of Disagreement

    Get PDF
    In this paper, we infer how the estimates of firm value by “optimists” and “pessimists” evolve in response to information shocks. Specifically, we examine returns and disagreement measures for portfolios of short-sale-constrained stocks that have experienced large gains or large losses. Our analysis suggests the presence of two groups, one of which overreacts to new information and remains biased over about 5 years, and a second group, which underreacts and whose expectations are unbiased after about 1 year. Our results have implications for the belief dynamics that underlie the momentum and long-term reversal effect

    Signatures of Dark Matter Scattering Inelastically Off Nuclei

    Full text link
    Direct dark matter detection focuses on elastic scattering of dark matter particles off nuclei. In this study, we explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt de-excitation. We calculate the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents. For these cases, we find that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 MeV. We calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow to determine the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One figure added; supplemental material (fits to the structure functions) added as an Appendi

    Collisional excitation of CH(X-2 Pi) by He: new ab initio potential energy surfaces and scattering calculations

    Get PDF
    S.M. and F.L. greatly acknowledge the financial support of ANR project ‘HYDRIDES’. This research utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges the financial support by the National Science Foundation Grant No. CHE-121333

    Influence of nonmagnetic dielectric spacers on the spin wave response of one-dimensional planar magnonic crystals

    Get PDF
    The one-dimensional planar magnonic crystals are usually fabricated as a sequence of stripes intentionally or accidentally separated by non-magnetic spacers. The influence of spacers on shaping the spin wave spectra is complex and still not completely clarified. We performed the detailed numerical studies of the one-dimensional single- and bi-component magnonic crystals comprised of a periodic array of thin ferromagnetic stripes separated by non-magnetic spacers. We showed that the dynamic dipolar interactions between the stripes mediated by non-magnetic spacer, even ultra-narrow, significantly shift up the frequency of the ferromagnetic resonance and simultaneously reduce the spin wave group velocity, which is manifested by the flattening of the magnonic band. We attributed these changes in the spectra to the modifications of dipolar pinning and shape anisotropy both dependent on the width of the spacers and the thickness of the stripes, as well as to the dynamical magnetic volume charges formed due to inhomogeneous spin wave amplitude

    An investigation of thermodynamics, microscopic structure, depolarized Rayleigh scattering, and collision dynamics in Xe-N-2 supercritical mixtures

    Get PDF
    We would like to dedicate this work to the late Professor W. A. Steele (W.A.S.), Penn State University, USA. NATO Research-Project SA 5-2-05(CRG 950087) JARC (97) 288 is acknowledged for project funding to J.S., H.V. and W.A.S. The Greek State Scholarships Foundation (IKY) is acknowledged for an award based on performance to S. M. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility ARIS. The CPU time of the Computing Centre of the University of Athens (Greece) is gratefully acknowledged. This research utilized Queen Mary’s Mid-Plus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges financial support from the NSF Grant No. CHE-1565872 to Millard Alexander

    Fluid Interactions That Enable Stealth Predation by the Upstream-Foraging Hydromedusa \u3cem\u3eCraspedacusta sowerbyi\u3c/em\u3e

    Get PDF
    Unlike most medusae that forage with tentacles trailing behind their bells, several species forage upstream of their bells using aborally located tentacles. It has been hypothesized that these medusae forage as stealth predators by placing their tentacles in more quiescent regions of flow around their bells. Consequently, they are able to capture highly mobile, sensitive prey. We used digital particle image velocimetry (DPIV) to quantitatively characterize the flow field around Craspedacusta sowerbyi, a freshwater upstream-foraging hydromedusa, to evaluate the mechanics of its stealth predation. We found that fluid velocities were minimal in front and along the sides of the bell where the tentacles are located. As a result, the deformation rates in the regions where the tentacles are located were low, below the threshold rates required to elicit an escape response in several species of copepods. Estimates of their encounter volume rates were examined on the basis of flow past the tentacles, and trade-offs associated with tentacle characteristics were evaluated
    corecore