36 research outputs found

    Possibility of primordial black holes as the source of gravitational wave events in the advanced LIGO detector

    Get PDF
    The analysis of gravitational Wave (GW) data from advanced LIGO provides the mass of each companion of binary black holes as the source of GWs. The mass of events corresponding to the binary black holes from GW is above 2020 M_\odot which is much larger than the mass of astrophysical black holes detected by x-ray observations. In this work, we examine primordial black holes (PBHs) as the source of LIGO events. Assuming that 100%100\% of the dark matter is made of PBHs, we estimate the rate at which these objects make binaries, merge, and produce GWs as a function of redshift. The gravitational lensing of GWs by PBHs can also enhance the amplitude of the strain. We simulate GWs sourced by binary PBHs, with the detection threshold of S/N>10S/N>10 for both Livingston and Hanford detectors. For the log-normal mass function of PBHs, we generate the expected distribution of events, compare our results with the observed events, and find the best value of the mass function parameters (i.e., Mc=25MM_c =25 M_\odot and σ=0.6\sigma=0.6) in the log-normal mass function. Comparing the expected number of events with the number of observed ones rules out the present-Universe binary formation PBH scenario as the candidate for the source of GW events detected by LIGO.Comment: Final published versio

    Gaia21blx: complete resolution of a binary microlensing event in the Galactic disk

    Get PDF
    Context. Gravitational microlensing is a method that is used to discover planet-hosting systems at distances of several kiloparsec in the Galactic disk and bulge. We present the analysis of a microlensing event reported by the Gaia photometric alert team that might have a bright lens. Aims. In order to infer the mass and distance to the lensing system, the parallax measurement at the position of Gaia21blx was used. In this particular case, the source and the lens have comparable magnitudes and we cannot attribute the parallax measured by Gaia to the lens or source alone. Methods. Since the blending flux is important, we assumed that the Gaia parallax is the flux-weighted average of the parallaxes of the lens and source. Combining this assumption with the information from the microlensing models and the finite source effects we were able to resolve all degeneracies and thus obtained the mass, distance, luminosities and projected kinematics of the binary lens and the source. Results. According to the best model, the lens is a binary system at 2.18 ± 0.07 kpc from Earth. It is composed of a G star with 0.95 ± 0.17 M ⊙ and a K star with 0.53 ± 0.07 M ⊙. The source is likely to be an F subgiant star at 2.38 ± 1.71 kpc with a mass of 1.10 ± 0.18 M ⊙. Both lenses and the source follow the kinematics of the thin-disk population. We also discuss alternative models, that are disfavored by the data or by prior expectations, however.</p

    OGLE-2018-BLG-0022: A Nearby M-dwarf Binary

    Get PDF
    We report observations of the binary microlensing event OGLE-2018-BLG-0022, provided by the Robotic Observations of Microlensing Events (ROME)/Reactive Event Assessment (REA) Survey, which indicate that the lens is a low-mass binary star consisting of M3 (0.375 ± 0.020 M⊙) and M7 (0.098 ± 0.005 M⊙) components. The lens is unusually close, at 0.998 ± 0.047 kpc, compared with the majority of microlensing events, and despite its intrinsically low luminosity, it is likely that adaptive optics observations in the near future will be able to provide an independent confirmation of the lens masses

    Transit timing variations in the WASP-4 planetary system*

    Get PDF
    Abstract Transits in the planetary system WASP-4 were recently found to occur 80 s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = −9.2 ± 1.1 ms yr−1. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4 b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Full text link
    The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos' orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the first week, and 0.08-0.09 magnitudes/day over the entire study period. The system returned to its pre-impact brightness 24.3-25.3 days after impact through the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, through movement of the primary ejecta through the aperture likely played a role.Comment: 16 pages, 5 Figures, accepted in the Astrophysical Journal Letters (ApJL) on October 16, 202

    Six Outbursts of Comet 46P/Wirtanen

    Get PDF
    Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0.2 to −1.6 mag in a 5″ radius aperture and correspond to dust masses between ∼104 and 106 kg, but with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are on the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov-Gerasimenko, events that were notably lacking at comet 103P/Hartley 2. We compare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10–100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be correlated with time since the last event, but a physical interpretation with respect to solar insolation is lacking. We also examine Hubble Space Telescope images taken about two days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2 m

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Get PDF
    The impact of the Double Asteroid Redirection Test spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos’s orbit substantially, largely from the ejection of material. We present results from 12 Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ∼1.4 mag, we find consistent dimming rates of 0.11–0.12 mag day−1 in the first week, and 0.08–0.09 mag day−1 over the entire study period. The system returned to its pre-impact brightness 24.3–25.3 days after impact though the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, though movement of the primary ejecta through the aperture likely played a role
    corecore