141 research outputs found

    Nonuniqueness of gravity-induced fermion interaction in the Einstein-Cartan theory

    Full text link
    The problem of nonuniqueness of minimal coupling procedure for Einstein--Cartan (EC) gravity with matter is investigated. It is shown that the predictions of the theory of gravity with fermionic matter can radically change if the freedom of addition of a divergence to the flat space matter Lagrangean density is exploited. The well--known gravity induced four--fermion interaction is shown to reveal unexpected features. The solution to the problem of nonuniqueness of minimal coupling of EC gravity is argued to be necessary in order for the theory to produce definite predictions. In particular, the EC theory with fermions is shown to be indistinguishable from usual General Relativity on the effective level, if the flat space fermionic Lagrangean is appropriately chosen. Hence, the solution to the problem of nonuniqueness of minimal coupling procedure is argued to be necessary if EC theory is to be experimentally verifiable. It could also enable experimental tests of theories based on EC, such as loop approach to quantisation of gravitational field. Some ideas of how the arbitrariness incorporated in EC theory could be restricted or even eliminated are presented.Comment: 13 pages, references added, more exhaustive explanations given, typos correcte

    Caco<inf>3</inf> precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Marine cyanobacterial mats were cultured on coastal sediments (NivĂ„ Bay, Øresund, Denmark) for over three years in a closed system. Carbonate particles formed in two different modes in the mat: (i) through precipitation of submicrometer-sized grains of Mg calcite within the mucilage near the base of living cyanobacterial layers, and (ii) through precipitation of a variety of mixed Mg calcite/aragonite morphs in layers of degraded cyanobacteria dominated by purple sulfur bacteria. The 13C values were about 2‰ heavier in carbonates from the living cyanobacterial zones as compared to those generated in the purple bacterial zones. Saturation indices calculated with respect to calcite, aragonite, and dolomite inside the mats showed extremely high values across the mat profile. Such high values were caused by high pH and high carbonate alkalinity generated within the mats in conjunction with increased concentrations of calcium and magnesium that were presumably stored in sheaths and extracellular polymer substances (EPS) of the living cyanobacteria and liberated during their post-mortem degradation. The generated CaCO3 morphs were highly similar to morphs reported from heterotrophic bacterial cultures, and from bacterially decomposed cyanobacterial biomass emplaced in Ca-rich media. They are also similar to CaCO3 morphs precipitated from purely inorganic solutions. No metabolically (enzymatically) controlled formation of particular CaCO3 morphs by heterotrophic bacteria was observed in the studied mats. The apparent alternation of in vivo and post-mortem generated calcareous layers in the studied cyanobacterial mats may explain the alternation of fine-grained (micritic) and coarse-grained (sparitic) laminae observed in modern and fossil calcareous cyanobacterial microbialites as the result of a probably similar multilayered mat organization

    Behaviour of domestic rabbits during 2 weeks after weaning

    Get PDF
    Thirty three rabbits from five litters that were weaned at the age of 5 weeks were observed. The animals were kept in pens that were enriched with an elevation made of bricks. In total, 150&thinsp;h of observations made at feeding time (07:30–10:00 and 18:00–20:30&thinsp;LT, local time) were analysed. A number of affiliative, exploratory, comfort, eating, resting and locomotor behaviours were observed. Agonistic behaviour was not observed. Rabbits showed companion and location preferences: 56&thinsp;% of animals had a preferred companion, and 84&thinsp;% preferred a particular place in the pen. Significant effects of group size and time of day on the frequency of some forms of behaviour were found, e.g. rabbits performed comfort behaviours more often in the morning. Sex did not influence the rabbits' behaviour. Correlations were also found between different forms of behaviour, e.g. animals that performed more exploratory behaviours also showed more locomotor behaviours and affiliative interactions.</p

    Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: a ubiquitous tracer of molecular gas

    Get PDF
    We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1 - 0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of ~ 24kms-1, that had not been identified in molecular absorption line studies prior to the launch of Herschel.Comment: 4 pages, 3 figures, A&A Letter special issue, accepted on 07/13/201

    Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)

    Get PDF
    The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N=1-0, J=2-1 and ortho-NH2 1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1, and searched unsuccessfully for NH+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11-54 km/s are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry.Comment: 5 pages, 3 figures, 2 online pages with 2 figures. Accepted for publication in A&A July 6 (Herschel/HIFI special issue

    Excitation and Abundance of C3 in star forming cores:Herschel/HIFI observations of the sight-lines to W31C and W49N

    Full text link
    We present spectrally resolved observations of triatomic carbon (C3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (T_rot) of ~50--70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived T_rot, we get column densities N(C3) ~7-9x10^{14} cm^{-2} and abundance x(C3)~10^{-8} with respect to H2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C3)=10^{-8}, T_kin=30-50 K, N(C3)=1.5 10^{15} cm^{-2} fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.Comment: Accepted for publication in Astronomy and Astrophysics (HIFI first results issue

    Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)

    Get PDF
    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0–14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples, possibly due to more stable and favorable laboratory conditions. The maintenance of highly diverse natural microbialites in laboratory aquaria holds promise to study the role of different metabolisms in the formation of these structures under controlled conditions

    Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C*

    Get PDF
    We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H216O and H218O in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35 ± 0.35, corresponding to a spin temperature of ~27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust
    • 

    corecore