67 research outputs found

    Exceptional Record of Mid-Pleistocene Vertebrates Helps Differentiate Climatic from Anthropogenic Ecosystem Perturbations

    Get PDF
    Mid-Pleistocene vertebrates in North America are scarce but important for recognizing the ecological effects of climatic change in the absence of humans. We report on a uniquely rich mid-Pleistocene vertebrate sequence from Porcupine Cave, Colorado, which records at least 127 species and the earliest appearances of 30 mammals and birds. By analyzing \u3e20,000 mammal fossils in relation to modern species and independent climatic proxies, we determined how mammal communities reacted to presumed glacial-interglacial transitions between 1,000,000 and 600,000 years ago. We conclude that climatic warming primarily affected mammals of lower trophic and size categories, in contrast to documented human impacts on higher trophic and size categories historically. Despite changes in species composition and minor changes in small-mammal species richness evident at times of climatic change, overall structural stability of mammal communities persisted \u3e600,000 years before human impacts

    Bidirectional switch of the valence associated with a hippocampal contextual memory engram

    Get PDF
    The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.RIKEN Brain Science InstituteHoward Hughes Medical InstituteJPB FoundationNational Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Similar Neural Activity during Fear and Disgust in the Rat Basolateral Amygdala

    Get PDF
    Much research has focused on how the amygdala processes individual affects, yet little is known about how multiple types of positive and negative affects are encoded relative to one another at the single-cell level. In particular, it is unclear whether different negative affects, such as fear and disgust, are encoded more similarly than negative and positive affects, such as fear and pleasure. Here we test the hypothesis that the basolateral nucleus of the amygdala (BLA), a region known to be important for learned fear and other affects, encodes affective valence by comparing neuronal activity in the BLA during a conditioned fear stimulus (fear CS) with activity during intraoral delivery of an aversive fluid that induces a disgust response and a rewarding fluid that induces a hedonic response. Consistent with the hypothesis, neuronal activity during the fear CS and aversive fluid infusion, but not during the fear CS and rewarding fluid infusion, was more similar than expected by chance. We also found that the greater similarity in activity during the fear- and disgust-eliciting stimuli was specific to a subpopulation of cells and a limited window of time. Our results suggest that a subpopulation of BLA neurons encodes affective valence during learned fear, and furthermore, within this subpopulation, different negative affects are encoded more similarly than negative and positive affects in a time-specific manner

    Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment

    Get PDF
    Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA→PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA→PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.National Institutes of Health (U.S.) (Award 1R25-MH092912-01)National Institute of Mental Health (U.S.) (Grant R01- MH102441-01)National Institutes of Health (U.S.) (Award DP2- DK-102256-01

    Disrupted habenula function in major depression.

    Get PDF
    The habenula is a small, evolutionarily conserved brain structure that plays a central role in aversive processing and is hypothesised to be hyperactive in depression, contributing to the generation of symptoms such as anhedonia. However, habenula responses during aversive processing have yet to be reported in individuals with major depressive disorder (MDD). Unmedicated and currently depressed MDD patients (N=25, aged 18-52 years) and healthy volunteers (N=25, aged 19-52 years) completed a passive (Pavlovian) conditioning task with appetitive (monetary gain) and aversive (monetary loss and electric shock) outcomes during high-resolution functional magnetic resonance imaging; data were analysed using computational modelling. Arterial spin labelling was used to index resting-state perfusion and high-resolution anatomical images were used to assess habenula volume. In healthy volunteers, habenula activation increased as conditioned stimuli (CSs) became more strongly associated with electric shocks. This pattern was significantly different in MDD subjects, for whom habenula activation decreased significantly with increasing association between CSs and electric shocks. Individual differences in habenula volume were negatively associated with symptoms of anhedonia across both groups. MDD subjects exhibited abnormal negative task-related (phasic) habenula responses during primary aversive conditioning. The direction of this effect is opposite to that predicted by contemporary theoretical accounts of depression based on findings in animal models. We speculate that the negative habenula responses we observed may result in the loss of the capacity to actively avoid negative cues in MDD, which could lead to excessive negative focus

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    “I Learn as I Please”: The Construction of Children's Knowledge in, and about, a Buenos Aires Neighbourhood

    No full text
    This article summarises the findings of an ethnographic study among children of ages nine to fifteen who attend Aula Vereda, a community organisation in their neighbourhood with educational and recreational activities, once a week. On the assumption that children actively construct knowledge and do not merely repeat what adults impart, I’ll identify three different ways in which these youths approach the instances of learning that the educators propose at the centre. These approaches, in turn, reveal a variety of cognitive productions and means for negotiating the spatial and generational meanings at work in the neighbourhood where they live.Fil: Shabel, Paula Nurit. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentin
    corecore