223 research outputs found

    Migration of Jupiter-family comets and resonant asteroids to near-Earth space

    Full text link
    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 yr step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but sometimes give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit, and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits, and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. Some Jupiter-family comets can reach inclinations i>90 deg. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region.Comment: Proc. of the international conference "New trends in astrodynamics and applications" (20-22 January 2003, University of Maryland, College Park

    Asteroid-type orbit evolution near the 5:2 resonance

    Get PDF
    In this case of the 5:2 commensurability with the motion of Jupiter, an asteroid can reach the orbits of Mars, Earth, and Venus when eccentricity e is greater than 0.41, 0.65, and 0.74, respectively. For individual fictitious asteroids, Ipatov and Yoshikawa obtained a growth in e from 0.15 to 074-0.76. Rates of changes in orbital orientations are different for Mars, Earth, Venus, and the asteroid. Therefore, for corresponding values of e, the asteroid could encounter these planets and leave the gap at those encounters. In order to investigate this hypothesis of the 5:2 Kirkwood gap formation, Ipatov studied the regions of initial data for which the eccentricities of asteroids located near the 5:2 commensurability exceeded 0.41 during evolution. The orbit evolution for 500 fictitious asteroids was investigated by numerical integration of the complete (unaveraged) equations of motion for the three-body problem (Sun-Jupiter-asteroid). The equations of motion were integrated in the time intervals T is greater than or equal to 5(10)(exp 3)t(sub J) (t(sub J) is the heliocentric orbital period of Jupiter) in the planar model, T is greater than or equal to 10(exp 4)t(sub J) at initial inclination 5 deg is less than or equal to i(sub 0) is less than or equal to 20 deg and T = 10(exp 5)t(sub J) at i(sub 0) = 40 deg. The larger interval T was taken at i(sub 0) = 40 deg because in this case for the majority of runs maximum values of e and i were reached in the time delta(t) is greater than 2(10)(exp 4)t(sub J)

    The angular momentum of two collided rarefied preplanetesimals and the formation of binaries

    Full text link
    This paper studies the mean angular momentum associated with the collision of two celestial objects in the earliest stages of planet formation. Of primary concern is the scenario of two rarefied preplanetesimals (RPPs) in circular heliocentric orbits. The theoretical results are used to develop models of binary or multiple system formation from RPPs, and explain the observation that a greater fraction of binaries originated farther from the Sun. At the stage of RPPs, small-body satellites can form in two ways: a merger between RPPs can have two centers of contraction, or the formation of satellites from a disc around the primary or the secondary. Formation of the disc can be caused by that the angular momentum of the RPP formed by the merger is greater than the critical angular momentum for a solid body. One or several satellites of the primary (moving mainly in low-eccentricity orbits) can be formed from this disc at any separation less than the Hill radius. The first scenario can explain a system such as 2001 QW322 where the two components have similar masses but are separated by a great distance. In general, any values for the eccentricity and inclination of the mutual orbit are possible. Among discovered binaries, the observed angular momenta are smaller than the typical angular momenta expected for identical RPPs having the same total mass as the discovered binary and encountering each other in circular heliocentric orbits. This suggests that the population of RPPs underwent some contraction before mergers became common.Comment: 12 pages, Monthly Notices of Royal Astron. Society, in pres

    Stable Orbits in the Feeding Zone of the Planet Proxima Centauri c

    Full text link
    Estimates of the size of the feeding zone of the planet Proxima Centauri c have been made at initial orbital eccentricities of planetesimals equal to 0.02 or 0.15. The research is based on the results of modeling of the evolution of planetesimals' orbits under the influence of the star and planets Proxima Centauri c and b. The considered time interval reached a billion years. It was found that after the accumulation of the planet Proxima Centauri c some planetesimals may have continues to move in stable elliptical orbits within its feeding zone, largely cleared of planetesimals. Usually such planetesimals can move in some resonances with the planet (Proxima Centauri c), for example, in the resonance 1:1 (as Jupiter Trojans), 5:4 and 3:4 and usually have small eccentricities. Some planetesimals that moved for a long time (1-2 million years) along chaotic orbits fell into the resonances 5:2 and 3:10 with the planet Proxima Centauri c and moved in them at least tens of millions of years.Comment: 13 pages, 11 figure
    corecore