1,128 research outputs found

    Optical properties of small polarons from dynamical mean-field theory

    Full text link
    The optical properties of polarons are studied in the framework of the Holstein model by applying the dynamical mean-field theory. This approach allows to enlighten important quantitative and qualitative deviations from the limiting treatments of small polaron theory, that should be considered when interpreting experimental data. In the antiadiabatic regime, accounting on the same footing for a finite phonon frequency and a finite electron bandwidth allows to address the evolution of the optical absorption away from the well-understood molecular limit. It is shown that the width of the multiphonon peaks in the optical spectra depends on the temperature and on the frequency in a way that contradicts the commonly accepted results, most notably in the strong coupling case. In the adiabatic regime, on the other hand, the present method allows to identify a wide range of parameters of experimental interest, where the electron bandwidth is comparable or larger than the broadening of the Franck-Condon line, leading to a strong modification of both the position and the shape of the polaronic absorption. An analytical expression is derived in the limit of vanishing broadening, which improves over the existing formulas and whose validity extends to any finite-dimensional lattice. In the same adiabatic regime, at intermediate values of the interaction strength, the optical absorption exhibits a characteristic reentrant behavior, with the emergence of sharp features upon increasing the temperature -- polaron interband transitions -- which are peculiar of the polaron crossover, and for which analytical expressions are provided.Comment: 16 pages, 6 figure

    Peningkatan Kepercayaan Diri Mahasiswa melalui Pelatihan Asertivitas

    Full text link
    This study was initiated by the observation that Brawijaya University psychology student batch 2007 and 2008 appeared passive in the teaching-learning process. It is acknowledged that an assertive training will be needed. The training is expected to be a pilot project or the initial steps for the implementation of students' soft skills.This study aims to determine the effectiveness of assertive training to enhance student confidence. Subjects of 22 psychology students will be examined through experimental repeated measure design methodSelf confidence level was measured twice pre and post the training given. Based on the t-test test results of the self confidence level rates obtained from the pre test mean of 103.68 with standard deviations of 7.17. While the post test came up with mean of 122.45 with standard deviations of 10.05. The results of the research showed that the confidence scores of students increased significantly after the training is given. This conclusion showed that assertive training was effective to improve confidence level of the students

    Is Quantum Einstein Gravity Nonperturbatively Renormalizable?

    Get PDF
    We find considerable evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure

    A frozen super-Earth orbiting a star at the bottom of the Main Sequence

    Full text link
    We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibrated the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its char- acteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084 [+0.015] [-0.012] M\odot) at a distance of 660 [+100] [-70] pc orbited by a 3.2 [+5.2] [-1.8] M\oplus super-Earth at 0.66 [+0.51] [-0.22] AU. We then discuss the properties of this cold planetary system.Comment: published version A&A 540, A78 (2012) A&A, 10 pages, 7 Figure

    Self-trapped Exciton and Franck-Condon Spectra Predicted in LaMnO3_3

    Full text link
    Because the ground state has cooperative Jahn-Teller order, electronic excitations in LaMnO3_3 are predicted to self-trap by local rearrangement of the lattice. The optical spectrum should show a Franck-Condon series, that is, a Gaussian envelope of vibrational sidebands. Existing data are reinterpreted in this way. The Raman spectrum is predicted to have strong multiphonon features.Comment: 5 pages with two embedded postscript figure

    MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy

    Full text link
    We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although the Einstein timescale is relatively short, t_e=43 days, the lightcurve displays deviations consistent with parallax effects due to the Earth's accelerated motion. We show that the chi^2 surface has four distinct local minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU, respectively. This is the second event displaying such a degeneracy and the first toward the Galactic bulge. For both events, the jerk-parallax formalism accurately describes the offsets between the different solutions, giving hope that when extra solutions exist in future events, they can easily be found. However, the morphologies of the chi^2 surfaces for the two events are quite different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200

    RoboTAP: Target priorities for robotic microlensing observations

    Get PDF
    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys

    The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data

    Full text link
    In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). This unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.Comment: Accepted for publication in MNRAS. On-line data available on OGLE website: http://ogle.astrouw.edu.p

    Detection of Extrasolar Planets by Gravitational Microlensing

    Full text link
    Gravitational microlensing provides a unique window on the properties and prevalence of extrasolar planetary systems because of its ability to find low-mass planets at separations of a few AU. The early evidence from microlensing indicates that the most common type of exoplanet yet detected are the so-called "super-Earth" planets of ~10 Earth-masses at a separation of a few AU from their host stars. The detection of two such planets indicates that roughly one third of stars have such planets in the separation range 1.5-4 AU, which is about an order of magnitude larger than the prevalence of gas-giant planets at these separations. We review the basic physics of the microlensing method, and show why this method allows the detection of Earth-mass planets at separations of 2-3 AU with ground-based observations. We explore the conditions that allow the detection of the planetary host stars and allow measurement of planetary orbital parameters. Finally, we show that a low-cost, space-based microlensing survey can provide a comprehensive statistical census of extrasolar planetary systems with sensitivity down to 0.1 Earth-masses at separations ranging from 0.5 AU to infinity.Comment: 43 pages. Very similar to chapter 3 of Exoplanets: Detection, Formation, Properties, Habitability, John Mason, ed. Springer (April 3, 2008
    corecore