1,202 research outputs found

    Aging and Immortality in a Cell Proliferation Model

    Full text link
    We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomeres become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.Comment: 6 pages, 1 figure, 2-column revtex4 format; version 2: final published form; contains various improvements in response to referee comment

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation

    Get PDF
    Neurodegeneration with brain iron accumulation encompasses a heterogeneous group of rare neurodegenerative disorders that are characterized by iron accumulation in the brain. Severe generalized dystonia is frequently a prominent symptom and can be very disabling, causing gait impairment, difficulty with speech and swallowing, pain and respiratory distress. Several case reports and one case series have been published concerning therapeutic outcome of pallidal deep brain stimulation in dystonia caused by neurodegeneration with brain iron degeneration, reporting mostly favourable outcomes. However, with case studies, there may be a reporting bias towards favourable outcome. Thus, we undertook this multi-centre retrospective study to gather worldwide experiences with bilateral pallidal deep brain stimulation in patients with neurodegeneration with brain iron accumulation. A total of 16 centres contributed 23 patients with confirmed neurodegeneration with brain iron accumulation and bilateral pallidal deep brain stimulation. Patient details including gender, age at onset, age at operation, genetic status, magnetic resonance imaging status, history and clinical findings were requested. Data on severity of dystonia (Burke Fahn Marsden Dystonia Rating Scale—Motor Scale, Barry Albright Dystonia Scale), disability (Burke Fahn Marsden Dystonia Rating Scale—Disability Scale), quality of life (subjective global rating from 1 to 10 obtained retrospectively from patient and caregiver) as well as data on supportive therapy, concurrent pharmacotherapy, stimulation settings, adverse events and side effects were collected. Data were collected once preoperatively and at 2–6 and 9–15 months postoperatively. The primary outcome measure was change in severity of dystonia. The mean improvement in severity of dystonia was 28.5% at 2–6 months and 25.7% at 9–15 months. At 9–15 months postoperatively, 66.7% of patients showed an improvement of 20% or more in severity of dystonia, and 31.3% showed an improvement of 20% or more in disability. Global quality of life ratings showed a median improvement of 83.3% at 9–15 months. Severity of dystonia preoperatively and disease duration predicted improvement in severity of dystonia at 2–6 months; this failed to reach significance at 9–15 months. The study confirms that dystonia in neurodegeneration with brain iron accumulation improves with bilateral pallidal deep brain stimulation, although this improvement is not as great as the benefit reported in patients with primary generalized dystonias or some other secondary dystonias. The patients with more severe dystonia seem to benefit more. A well-controlled, multi-centre prospective study is necessary to enable evidence-based therapeutic decisions and better predict therapeutic outcomes

    Telomerase activity in human leukemic cells with or without monosomy 7 or 7q-

    Get PDF
    BACKGROUND: In bone marrow material from patients with various leukemias we noted that samples with either a deletion on the long arm of one chromosome 7 (7q-) or a monosomy 7 had a higher telomerase activity. Considering that introduction of a chromosome 7 into a cancer cell line had been reported to eliminate telomerase activity, that 7q- is a common negative prognostic finding in cancers, and that the deleted segment (band 7q31) contains an unidentified tumor suppressor gene, we wondered if this gene might be a telomerase inhibitor. RESULTS: We found no significant difference in telomerase activity between the three groups of patient samples. In contrast to reports on tumor cell lines we observed no amplification of the telomerase genes. METHODS: We analyzed telomerase activity and copy number of the telomerase genes hTERT and hTR in frozen archival bone marrow samples from leukemia patients with a referral diagnosis of AML, and either a monosomy for chromosome 7, a deletion on the long arm of chromosome 7 (7q-), or none of these aberrations. Telomerase activity was measured with a commercially available kit, and the copy number of the telomerase genes was tested by FISH. CONCLUSIONS: We found no evidence of a telomerase inhibitor in band 7q31. The lack of telomerase gene amplification found in cell lines from solid tumors could reflect that this amplification is a property of solid tumors, not of hematological cancers

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Gender and sexual orientation differences in cognition across adulthood : age is kinder to women than to men regardless of sexual orientation

    Get PDF
    Despite some evidence of greater age-related deterioration of the brain in males than in females, gender differences in rates of cognitive aging have proved inconsistent. The present study employed web-based methodology to collect data from people aged 20-65 years (109,612 men; 88,509 women). As expected, men outperformed women on tests of mental rotation and line angle judgment, whereas women outperformed men on tests of category fluency and object location memory. Performance on all tests declined with age but significantly more so for men than for women. Heterosexuals of each gender generally outperformed bisexuals and homosexuals on tests where that gender was superior; however, there were no clear interactions between age and sexual orientation for either gender. At least for these particular tests from young adulthood to retirement, age is kinder to women than to men, but treats heterosexuals, bisexuals, and homosexuals just the same

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders

    Get PDF
    Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1—T2-weighted hyperintensities in the putamen; Cluster 2—T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3—T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4—T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice

    Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in pank2 knock-out mouse model

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration
    corecore