4,328 research outputs found

    Coherent acoustic vibration of metal nanoshells

    Full text link
    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.Comment: 5 pages, 3 figure

    NASICON materials - a long neglected class of solid electrolytes

    Get PDF
    The so-called NASICON materials AT2P3O12 (A = alkaline metal, T = tetravalent transition metal) are known since the 1970s [1] and are derived from the first “Na+ super-ionic conductor”, Na3Zr2Si2PO12, of this group of materials. The aims of current investigations are on the one hand the better understanding of the ionic conduction and on the other hand the search for new materials with very high ionic conductivity. For this purpose, new and simple synthesis methods have been developed, which deliver very homogeneous powders with reduced temperatures for the preparation of ceramics. In this way a lithium ion conductor with the composition Li1.5Al0.5Ti1.5P3O12 was manufactured. After sintering to highly dense ceramics a total conductivity of 0.7 mS/cm was achieved at room temperature [2] and therefore this material belongs to the best known solid oxidic Li+ ion conductors. NMR and impedance spectroscopy investigations [3-5] have shown that the bulk conductivity amounts to 3-5 mS/cm and that the grain boundaries determine the quality of the material. In the case of Na+ ion conductors, the prototype Na3Zr2Si2PO12 was newly synthesized and gave a previously not achieved conductivity of 1 mS/cm [6]. The modification of the composition by substitution with scandium delivered conductivities of 0.8 mS/cm (Na3.4Sc2Si0.4P2.6O12) [7] and 4 mS/cm (Na3.4Zr1.6Sc0.4Si2PO12) [8]. The latter composition possesses one of the highest known Na+ ion conductivities of oxide ceramics and reaches the conductivity of liquid electrolytes. The mentioned compositions confirm the empirical criteria which are necessary for achieving high ionic conductivities in NASICON materials [9]. References: [1] H. Y. P. Hong, Mater. Res. Bull. 11 (1976) 173-182; H. Y. P. Hong, J. B. Goodenough, J. A. Kafalas, Mater. Res. Bull. 11 (1976) 203-220 [2] Q. Ma, Q. Xu, C.-L. Tsai, F. Tietz, O. Guillon, J. Am. Ceram. Soc., (2016), in press [3] V. Epp, Q. Ma, F. Tietz, M. Wilkening, Phys. Chem. Chem. Phys., 17 (2015) 32115-32121 [4] S. Breuer, D. Prutsch, V. Epp, Q. Ma, F. Preishuber-PflĂŒgl, F. Tietz, M. Wilkening, J. Mater. Chem. A, 3 (2015) 21343-21350 [5] D. Rettenwander, A. Welzl, S. Pristat, F. Tietz, S. Taibl, G. J. Redhammer, J. Fleig, J. Chem. Mater. A, 4 (2016) 1506-1513 [6] S. Naqash, Q. Ma, Tietz, O. Guillon, in preparation [7] M. Guin, F. Tietz, O. Guillon, in preparation [8] Q. Ma, M. Guin, S. Naqash, C.-L. Tsai, F. Tietz, O. Guillon, in preparation [9] M. Guin, F. Tietz, J. Power Sources, 273 (2015) 1056-106

    Barometric pumping of a fractured porous medium

    Get PDF
    International audienceBarometric pumping plays a crucial role in the release of trace gases from fractured porous media to the atmosphere, and it requires a rigorous and complete modeling in order to go beyond the approximate schemes available in the literature. Therefore, a coupled set of convection and convection-diffusion equations for a slightly compressible fluid in unsteady conditions should be solved. The numerical methodology is presented, and it is applied to conditions close to the ones of the Roselend Natural Laboratory (France). The precision of the code is assessed and the mechanism of barometric pumping is explained. The usual schematization by simple vertical fractures is shown to be only qualitative. Finally, barometric pumping is shown to be efficient in a narrow range of parameter values; its efficiency is a decreasing function of the matrix porosity and of the fracture density

    Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy

    No full text
    F⁻ negative ions were detected by direct observation of the weak photodetachmentabsorption continuum below 364.5nm by cavity ring-down spectroscopy. The negative ions were generated in a modified industrial dielectricplasmaetch reactor, with 2+27MHz dual frequency capacitive excitation in Ar∕CF₄∕O₂ and Ar∕C₄F₈∕O₂ gas mixtures. The F⁻ signal was superimposed on an unidentified absorption continuum, which was diminished by O₂ addition. The F⁻ densities were in the range of (0.5–3)×10ÂčÂčcm⁻³, and were not significantly different for single (27MHz) or dual (2+27MHz) frequency excitation, not confirming recent modeling predictions.The authors wish to thank Lam Research Corporation for donation of equipment and financial support

    Magnetic properties of biogenic selenium nanomaterials

    Get PDF
    International audienceBioreduction of selenium oxyanions to elemental selenium is ubiquitous; elucidating the properties of this biogenic elemental selenium (BioSe) is thus important to understand its environmental fate. In this study, the magnetic properties of biogenic elemental selenium nanospheres (BioSe-Nanospheres) and nanorods (BioSe-Nanorods) obtained via the reduction of selenium(IV) using anaerobic granular sludge taken from an upflow anaerobic sludge blanket (UASB) reactor treating paper and pulp wastewater were investigated. The study indicated that the BioSe nanomaterials have a strong paramagnetic contribution with some ferromagnetic component due to the incorporation of Fe(III) (high-spin and low-spin species) as indicated by electron paramagnetic resonance (EPR). The paramagnetism did not saturate up to 50,000 Oe at 5 K, and the hysteresis curve showed the coercivity of 100 Oe and magnetic moment saturation around 10 emu. X-ray photoelectron spectroscopy (XPS) and EPR evidenced the presence of Fe(III) in the nanomaterial. Signals for Fe(II) were observed neither in EPR nor in XPS ruling out its presence in the BioSe nanoparticles. Fe(III) being abundantly present in the sludge likely got entrapped in the extracellular polymeric substances (EPS) coating the biogenic nanomaterials. The presence of Fe(III) in BioSe nanomaterial increases the mobility of Fe(III) and may have an effect on phytoplankton growth in the environment. Furthermore, as supported by the literature, there is a potential to exploit the magnetic properties of BioSe nanomaterials in drug delivery systems as well as in space refrigeration

    Tectonic Regime as a Control Factor for Crustal Fault Zone (CFZ) Geothermal Reservoir in an Amagmatic System: A 3D Dynamic Numerical Modeling Approach

    Get PDF
    Crustal fault zones provide interesting geological targets for high-temperature geothermal energy source in naturally deep-fractured basement areas. Field and laboratory studies have shown the ability of these systems to let fluid flow down to the brittle–ductile transition. However, several key questions about exploration still exist, in particular the fundamental effect of tectonic regimes on fluid flow in fractured basement domains. Based on poro-elasticity assumption, we considered an idealized 3D geometry and realistic physical properties. We examined a model with no tectonic regime (benchmark experiment) and a model with different tectonic regimes, namely a compressional, an extensional and a strike-slip tectonic regime. Compared to the benchmark experiment, the results demonstrate that different tectonic regimes cause pressure changes in the fault/basement system. The tectonic-induced pressure changes affect convective patterns, onset of convection as well as the spatial extent of thermal plumes and the intensity of temperature anomalies. Driven by poro-elastic forces, temperature anomalies around vertical faults in a strike-slip tectonic regime have a spatial extent that should be considered in preliminary exploratory phases

    Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)

    Get PDF
    Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa– Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous– Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.Fil: Ferreira, Gabriel S.. Universidade de Sao Paulo; Brasil. Senckenberg Centre For Human Evolution And Palaeoenvironment; Alemania. UniversitĂ€t TĂŒbingen; AlemaniaFil: Bronzati Filho, Mario. Bayerische Staatssammlung fĂŒr PalĂ€ontologie und Geologie; AlemaniaFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Sterli, Juliana. Museo PaleontolĂłgico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    SoLid : Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Get PDF
    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (similar to 6-8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK center dot CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported
    • 

    corecore