8,071 research outputs found

    Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback

    Get PDF
    A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be cancelled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general, robust and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.Comment: 6 pages + 2 pages supplemental material, 3 figure

    Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    Get PDF
    We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.Comment: Accepted on March 30 2016 for publication in Ap

    Multi-stage linear programming optimization for pump scheduling

    Get PDF
    Open Access journalCopyright © 2013 The Authors. Published by Elsevier Ltd.12th International Conference on Computing and Control for the Water Industry, CCWI2013This study presents a methodology based on Linear Programming for determining the optimal pump schedule on a 24-hour basis, considering as decision variables the continuous pump flow rates which are subsequently transformed into a discrete schedule. The methodology was applied on a case study derived from the benchmark Anytown network. To evaluate the LP reliability, a comparison was made with solutions generated by a Hybrid Discrete Dynamically Dimensioned Search (HD-DDS) algorithm. The cost associated with the result derived from the LP initial solution was shown to be lower than that obtained with repeated HD-DDS runs with differing random seeds

    Cross-cultural comparison of genetic and cultural transmission of smoking initiation using an extended twin kinship model

    Get PDF
    Background: Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent–offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. Methods: We examined the role of genetic and environmental factors in individual differences for smoking initiation (SI) using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission, while also estimating the regression of the prevalence of SI on age. A dichotomous lifetime ‘ever’ smoking measure was obtained from twins and relatives in the ‘Virginia 30,000’ sample and the ‘Australian 25,000’. Results: Results demonstrate that both genetic and environmental factors play a significant role in the liability to SI. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission, and resulting genotype-environment covariance. Age regression of the prevalence of SI was significant. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent–offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (1) age × gene interaction, and (2) social homogamy. Neither of the mechanism provided a significantly better explanation of the data. Conclusions: This study showed significant heritability, partly due to assortment, and significant effects of primarily non-parental shared environment on liability to SI

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Continuous intraoperative nerve monitoring in thyroidectomy using automatic periodic stimulation in 256 at-risk nerves

    Get PDF
    INTRODUCTION: Automatic periodic stimulation of the vagal nerve during thyroidectomy provides real-time feedback of recurrent laryngeal nerve function intraoperatively. To assess the validity of this device, the ability of monitoring to predict recurrent laryngeal nerve palsy was determined and the incidence of recurrent laryngeal nerve palsy recorded. MATERIALS AND METHODS: All thyroidectomies using APS® (Automatic Periodic Stimulation, Medtronic) nerve monitoring were reviewed over a 27-month period. Changes in signal amplitude and latency during thyroidectomy were recorded from saved data. Postoperative fibreoptic laryngoscopy determined the incidence of vocal cord immobility and recovery of nerve function was assessed from follow-up letters. RESULTS: A total of 256 at-risk nerves were examined (132 hemi- and 62 total thyroidectomies) in cases involving benign and malignant disease. Permanent recurrent laryngeal nerve palsy occurred in six (2.3%) lobectomies and transient recurrent laryngeal nerve palsy occurred in two lobectomies (< 1%). Sensitivity for detecting postoperative vocal cord immobility was 100% and specificity 85% if the end amplitude was 50% below baseline. The positive predictive value when amplitude was 50% below baseline was 18%. The negative predictive value when amplitude was 50% above or equal to baseline was 100%. Intraoperatively, the amplitude was 50% below baseline more frequently in the vocal cord immobility group (t-test, P < 0.015). No vagal nerve complications occurred. CONCLUSION: Whilst the incidence of recurrent laryngeal nerve palsy is comparable to rates in the literature, the incidence of transient palsy is lower than published averages. APS is able to reliably predict recurrent laryngeal nerve palsy based on end amplitude

    On the behavior of physical parameters of aqueous solutions affected by the inerton field of Teslar technology

    Full text link
    We present studies of the behavior of the permittivity of such liquid systems as pure distilled water, alcohol and 50%-aqueous solutions of alcohol as affected by the inerton field generated by a special signal generator contained within a wrist-watch or bracelet made by so-called Teslar technology. It has been found that the changes in fact are significant. The method employed has allowed us to fix the value of frequency of the field generated by the Teslar chip. The frequency has been determined to be approximately 8 Hz. The phenomenological consideration and submicroscopic foundations of a significant increase of the permittivity are studied taking into account an additional interaction, namely the mass interaction between polar water molecules, which is caused by the inerton field of the Teslar chip. This is one more proof of Krasnoholovets' concept regarding the existence of a substructure of the matter waves of moving/vibrating entities, i.e. the inerton field, which has been predicted in a series of his previous works.Comment: 15 p., 9 fig
    • …
    corecore