A "no-knowledge" measurement of an open quantum system yields no information
about any system observable; it only returns noise input from the environment.
Surprisingly, performing such a no-knowledge measurement can be advantageous.
We prove that a system undergoing no-knowledge monitoring has reversible noise,
which can be cancelled by directly feeding back the measurement signal. We show
how no-knowledge feedback control can be used to cancel decoherence in an
arbitrary quantum system coupled to a Markovian reservoir that is being
monitored. Since no-knowledge feedback does not depend on the system state or
Hamiltonian, such decoherence cancellation is guaranteed to be general, robust
and can operate in conjunction with any other quantum control protocol. As an
application, we show that no-knowledge feedback could be used to improve the
performance of dissipative quantum computers subjected to local loss.Comment: 6 pages + 2 pages supplemental material, 3 figure