2,125 research outputs found

    Velocity renormalization and anomalous quasiparticle dispersion in extrinsic graphene

    Full text link
    Using many-body diagrammatic perturbation theory we consider carrier density- and substrate-dependent many-body renormalization of doped or gated graphene induced by Coulombic electron-electron interaction effects. We quantitatively calculate the many-body spectral function, the renormalized quasiparticle energy dispersion, and the renormalized graphene velocity using the leading-order self-energy in the dynamically screened Coulomb interaction within the ring diagram approximation. We predict experimentally detectable many-body signatures, which are enhanced as the carrier density and the substrate dielectric constant are reduced, finding an intriguing instability in the graphene excitation spectrum at low wave vectors where interaction completely destroys all particle-like features of the noninteracting linear dispersion. We also make experimentally relevant quantitative predictions about the carrier density and wave-vector dependence of graphene velocity renormalization induced by electron-electron interaction. We compare on-shell and off-shell self-energy approximations within the ring diagram approximation, finding a substantial quantitative difference between their predicted velocity renormalization corrections in spite of the generally weak-coupling nature of interaction in graphene.Comment: 9 pages, 6 figure

    Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces

    Get PDF
    The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.5 eV. This decrease is caused by a change in electronic correlation energy, an effect completely absent from the corresponding Kohn-Sham gap. For weakly-coupled molecules, this correlation energy change is seen to be well described by a surface polarization effect. A classical image potential model illustrates trends for other conjugated molecules on graphite.Comment: 4 pages, 3 figures, 2 table

    A theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements

    Get PDF
    We propose a new class of materials, which can be viewed as graphene derivatives involving Group IA or Group VIIA elements, forming what we refer to as graphXene. We show that in several cases large band gaps can be found to open up, whereas in other cases a semimetallic behavior is found. Formation energies indicate that under ambient conditions, sp3^3 and mixed sp2^2/sp3^3 systems will form. The results presented allow us to propose that by careful tuning of the relative concentration of the adsorbed atoms, it should be possible to tune the band gap of graphXene to take any value between 0 and 6.4 eV.Comment: 5 pages, 4 figures. Transferred to PR

    Die Immunisierung gegen Kalbslab.

    Get PDF
    n/

    Frequency-dependent local interactions and low-energy effective models from electronic structure calculations

    Full text link
    We propose a systematic procedure for constructing effective models of strongly correlated materials. The parameters, in particular the on-site screened Coulomb interaction U, are calculated from first principles, using the GW approximation. We derive an expression for the frequency-dependent U and show that its high frequency part has significant influence on the spectral functions. We propose a scheme for taking into account the energy dependence of U, so that a model with an energy-independent local interaction can still be used for low-energy properties.Comment: 16 pages, 5 figure

    Lifetimes of Shockley electrons and holes at the Cu(111) surface

    Get PDF
    A theoretical many-body analysis is presented of the electron-electron inelastic lifetimes of Shockley electrons and holes at the (111) surface of Cu. For a description of the decay of Shockley states both below and above the Fermi level, single-particle wave functions have been obtained by solving the Schr\"odinger equation with the use of an approximate one-dimensional pseudopotential fitted to reproduce the correct bulk energy bands and surface-state dispersion. A comparison with previous calculations and experiment indicates that inelastic lifetimes are very sensitive to the actual shape of the surface-state single-particle orbitals beyond the Γˉ\bar\Gamma (k∥=0{\bf k}_\parallel=0) point, which controls the coupling between the Shockley electrons and holes.Comment: 4 pages, 3 figures, to appear in Phys. Rev.

    Elimination of unoccupied state summations in it ab initio self-energy calculations for large supercells

    Get PDF
    We present a new method for the computation of self-energy corrections in large supercells. It eliminates the explicit summation over unoccupied states, and uses an iterative scheme based on an expansion of the Green's function around a set of reference energies. This improves the scaling of the computational time from the fourth to the third power of the number of atoms for both the inverse dielectric matrix and the self-energy, yielding improved efficiency for 8 or more silicon atoms per unit cell

    The Effective Particle-Hole Interaction and the Optical Response of Simple Metal Clusters

    Full text link
    Following Sham and Rice [L. J. Sham, T. M. Rice, Phys. Rev. 144 (1966) 708] the correlated motion of particle-hole pairs is studied, starting from the general two-particle Greens function. In this way we derive a matrix equation for eigenvalues and wave functions, respectively, of the general type of collective excitation of a N-particle system. The interplay between excitons and plasmons is fully described by this new set of equations. As a by-product we obtain - at least a-posteriori - a justification for the use of the TDLDA for simple-metal clusters.Comment: RevTeX, 15 pages, 5 figures in uufiles format, 1 figure avaible from [email protected]
    • …
    corecore