3,373 research outputs found

    R and D evaluation of a lightweight, high strength magnesium alloy Quarterly report, 1 Nov. 1967 - 1 Feb. 1968

    Get PDF
    High strength properties of magnesium-scandium alloys with selected additive

    Formulating Viscous Hydrodynamics for Large Velocity Gradients

    Full text link
    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity g radients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the s tress-energy tensor tau_ij as dynamical objects, introduce new parameters, such as the relaxati on times describing non-equilibrium behavior of the elements tau_ij. By considering linear resp onse theory and entropy constraints, we show how the additional parameters are related to fluctuatio ns of tau_ij. Furthermore, the Israel-Stewart parameters are analyzed for their ability to prov ide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calcu lations, which are based on path-integral formulations in imaginary time.Comment: 16 page

    Ground-states of spin-1 bosons in asymmetric double-wells

    Full text link
    In this work we investigate the different states of a system of spin-1 bosons in two potential wells connected by tunneling, with spin-dependent interaction. The model utilizes the well-known Bose-Hubbard Hamiltonian, adding a local interaction term that depends on the modulus of the total spin in a well, favoring a high- or low-spin state for different signs of the coupling constant. We employ the concept of fidelity to detect critical values of parameters for which the ground state undergoes significant changes. The nature of the states is investigated through evaluation of average occupation numbers in the wells and of spin correlations. A more detailed analysis is done for a two-particle system, but a discussion of the three-particle case and some results for larger numbers are also presented.Comment: 7 pages, 10 figure

    Earthy bride

    Full text link
    There are nearly 2.5 million couples getting married in the United States each year (Harrison, 2008, pg. xi). That breaks down to more than 6,300 weddings in a single day. The average wedding in the United States “produces 63 tones of CO2 and 400-600 pounds of trash” and therefore, newlyweds are creating over 3,500,000 pounds of trash in a single at their weddings (Harrison, 2009, ¶ 2)! The green movement is on the rise and wedding industry needs to implement it to meet new demands. In order to do people need to be informed of the importance, benefits and savings of adopting a green wedding and implementing it into their lives. Earthy Bride is an eco-friendly resource online available committed to keeping the most up-to-date, useful tools available for those planning practical, stylish, eco-friendly weddings—and happily-ever-after too

    Bethe ansatz solution of the anisotropic correlated electron model associated with the Temperley-Lieb algebra

    Full text link
    A recently proposed strongly correlated electron system associated with the Temperley-Lieb algebra is solved by means of the coordinate Bethe ansatz for periodic and closed boundary conditions.Comment: 21 page

    Heisenberg spin chains based on sl(2|1) symmetry

    Full text link
    We find solutions of the Yang-Baxter equation acting on tensor product of arbitrary representations of the superalgebra sl(2|1). Based on these solutions we construct the local Hamiltonians for integrable homogeneous periodic chains and open chains.Comment: 28 pages LATE

    Realizing time crystals in discrete quantum few-body systems

    Get PDF
    The exotic phenomenon of time translation symmetry breaking under periodic driving - the time crystal - has been shown to occur in many-body systems even in clean setups where disorder is absent. In this work, we propose the realization of time-crystals in few-body systems, both in the context of trapped cold atoms with strong interactions and of a circuit of superconducting qubits. We show how these two models can be treated in a fairly similar way by adopting an effective spin chain description, to which we apply a simple driving protocol. We focus on the response of the magnetization in the presence of imperfect pulses and interactions, and show how the results can be interpreted, in the cold atomic case, in the context of experiments with trapped bosons and fermions. Furthermore, we provide a set of realistic parameters for the implementation of the superconducting circuit.Comment: 6 pages, 4 figure

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    Full text link
    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the non-interacting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.Comment: 15 pages, 7 figure
    corecore