2,612 research outputs found

    Characterization of the non-classical nature of conditionally prepared single photons

    Full text link
    A reliable single photon source is a prerequisite for linear optical quantum computation and for secure quantum key distribution. A criterion yielding a conclusive test of the single photon character of a given source, attainable with realistic detectors, is therefore highly desirable. In the context of heralded single photon sources, such a criterion should be sensitive to the effects of higher photon number contributions, and to vacuum introduced through optical losses, which tend to degrade source performance. In this paper we present, theoretically and experimentally, a criterion meeting the above requirements.Comment: 4 pages; 3 figure

    Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate

    Full text link
    We explore the feasibility of using high conversion-efficiency periodically-poled crystals to produce photon pairs for photon-counting detector calibrations at 1550 nm. The goal is the development of an appropriate parametric down-conversion (PDC) source at telecom wavelengths meeting the requirements of high-efficiency pair production and collection in single spectral and spatial modes (single-mode fibers). We propose a protocol to optimize the photon collection, noise levels and the uncertainty evaluation. This study ties together the results of our efforts to model the single-mode heralding efficiency of a two-photon PDC source and to estimate the heralding uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by Metrologi

    Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers

    Full text link
    We present a theoretical and experimental investigation of the emission characteristics and the flux of photon pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in quantum communication sources. We show that, by careful design, one can attain well defined modes close to the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being more easily aligned than crystal waveguides. We distinguish between singles coupling, conditional coincidence, and pair coupling, and show how each of these parameters can be maximized by varying the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies above 94% at optimal focusing, which is found by the geometrical relation L/z_R to be ~ 1 to 2 for the pump mode and ~ 2 to 3 for the fiber-modes, where L is the crystal length and z_R is the Rayleigh-range of the mode-profile. These results are independent on L. By showing that the single-mode bandwidth decreases as 1/L, we can therefore design the source to produce and couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to compensate for broadened photon packets--a vital problem for time-multiplexed qubits. Longer crystals also yield an increase in fiber photon flux proportional to sqrt{L}, and so, assuming correct focusing, we can only see advantages using long crystals.Comment: 19 pages, 15 figures, ReVTeX4, minor revisio

    The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis.

    Get PDF
    Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system

    High performance guided-wave asynchronous heralded single photon source

    Get PDF
    We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with a high probability of 0.38. At the same time the multi-photon emission probability is reduced by a factor of 10 compared to poissonian light sources. Relying on guided wave technologies such as integrated optics and fiber optics components, our source offers stability, compactness and efficiency and can serve as a paradigm for guided wave devices applied to quantum communication and computation using existing telecom networks

    Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors

    Full text link
    We compare the performance of various quantum key distribution (QKD) systems using a novel single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate (PPLN) waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984 (BB84), the Bennett, Brassard, and Mermin 1992 (BBM92), and the coherent differential phase shift keying (DPSK). We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all the three QKD protocols.Comment: 9 pages, 9 figure

    Reference design and simulation framework of a multi-megawatt airborne wind energy system

    Get PDF
    In this paper, we present the design and computational model of a representative multi-megawatt airborne wind energy (AWE) system, together with a simulation framework that accounts for the flight dynamics of the fixed-wing aircraft and the sagging of the tether, combining this with flight control and optimisation strategies to derive the power curve of the system. The computational model is based on a point mass approximation of the aircraft, a discretisation of the tether by five elastic segments and a rotational degree of freedom of the winch. The aircraft has a wing surface area of 150 m2 and is operated in pumping cycles, alternating between crosswind flight manoeuvres during reel out of the tether, and rapid decent towards the ground station during reel in. To maximise the net cycle power, we keep the design parameters of the aircraft constant, while tuning the operational and controller parameters for different wind speeds and given contraints. We find that the presented design can generate a net cycle power of up to 3.8 megawatts

    Anatomy of the anterior cruciate ligament

    Get PDF
    The anterior cruciate ligament (ACL) is a band of dense connective tissue which courses from the femur to the tibia. The ACL is a key structure in the knee joint, as it resists anterior tibial translation and rotational loads. When the knee is extended, the ACL has a mean length of 32mm and a width of 7-12mm. There are two components of the ACL, the anteromedial bundle (AMB) and the posterolateral bundle (PLB). They are not isometric with the main change being lengthening of the AMB and shortening of the PLB during flexion. The ACL has a microstructure of collagen bundles of multiple types (mostly type I) and a matrix made of a network of proteins, glycoproteins, elastic systems, and glycosaminoglycans with multiple functional interactions. The complex ultrastructural organization and abundant elastic system of the ACL allow it to withstand multiaxial stresses and varying tensile strains. The ACL is innervated by posterior articular branches of the tibial nerve and is vascularized by branches of the middle genicular arter

    Quantum key distribution over 30km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods

    Full text link
    We present a full implementation of a quantum key distribution system using energy-time entangled photon pairs and functioning with a 30km standard telecom fiber quantum channel. Two bases of two orthogonal states are implemented and the setup is quite robust to environmental constraints such as temperature variation. Two different ways to manage chromatic dispersion in the quantum channel are discussed.Comment: 10 pages, 4 figure
    corecore