89 research outputs found

    Technical Report: Observations and reanalyses data: comparison and trends in Southeast Asia

    Get PDF
    Reanalyses data sets, being temporally and spatially complete and available on six hourly timescales, are extremely convenient to use. Real observations represent the climate system with greater fidelity than reanalyses can, given that the latter are a complicated blend of observations and models via an assimilation scheme and rely heavily on the assimilation scheme where observations are absent. Knowing whether the reanalyses data reflects real data can be difficult to establish. In this part of the report, the observed data is compared with three reanalyses data sets for the SE Asia region. We use observations from SYNOP and METAR reports. SYNOP and METAR data are, in effect, observations taken at met stations and delivered to the Global Telecommunication System (GTS). Once in the GTS, they can be archived by institutions such as those delivering weather forecasts. Access to these data via the archives is generally much easier than through the individual Met Agencies. This is particularly true in the case of a study covering multiple nation states. These datasets are described in more detail in Sections 1.1 and 1.2

    Representation of the Indian Ocean Walker circulation in climate models and links to Kenyan rainfall

    Get PDF
    Reliable climate change projections over East Africa are vital because of regional vulnerability to precipitation changes. However, global climate models from Coupled Model Intercomparison Project Phase 5 (CMIP5) display significant biases in their representation of key East African rainfall seasons, which call into question the reliability of projected climate change. We investigate the links between models' representation of rainfall over Kenya during the long and short rains and the proximate Walker circulation. There is a strong correlation in the short rains between model biases in Kenyan rainfall and in the mid-to-upper tropospheric vertical velocity associated with this circulation. The overturning Indian Ocean Walker cell at the equator is absent in 5/25 models during the short rains – these models exhibit wet biases. In the long rains, dry biased models overestimate the strength of the descending limb of the circulation over East Africa. Omega biases over the Congo Basin are linked to broader Walker circulation biases. During the long rains, models overestimate equatorial descent more generally across the Western Hemisphere Tropics (0°E–200°E). A significant correlation is obtained across the model ensemble between model rainfall over Kenya and Western Hemisphere equatorial ascent during November. Atmosphere-only models display some improvements over coupled models, but biases of a similar magnitude remain. We therefore propose Indian Ocean Walker circulation errors as a key source of bias in CMIP5 East African rainfall. The results add to recent work on CMIP5 biases in this region, demonstrating that the Indian Ocean Walker circulation should be a focus for future model improvement and a consideration when assessing the reliability of climate projections over East Africa. Further work is needed on the causes of Walker circulation biases (in particular the role of SST), and on understanding the impact of Walker circulation biases on modelled tropical rainfall elsewhere in the world

    Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad

    Get PDF
    The Bodélé Depression, Chad is the planet's largest single source of dust. Deflation from the Bodélé could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodélé is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodélé Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodélé LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the world's largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the world's largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions

    Detection and analysis of Lhù'ààn Mân' (Kluane Lake) dust plumes using passive and active ground-based remote sensing supported by physical surface measurements

    Get PDF
    There is growing recognition that high-latitude dust (HLD), originating from local drainage-basin flows, is the dominant source for certain important phenomena such as particle deposition on snow/ice. The analysis of such local plumes (including a better exploitation of remote sensing data) has been targeted as a key aerosol issue by the HLD community. The sub-Arctic Lhù'ààn Mân' (Kluane Lake) region in the Canadian Yukon is subject to regular drainage-basin, wind-induced dust plumes. This dust emission site is one of many current and potential proglacial dust sources in the Canadian north. In situ ground-based measurements are, due to constraints in accessing these types of regions, rare. Ground- and satellite-based remote sensing accordingly play an important role in helping to characterize local dust sources in the Arctic and sub-Arctic. We compared ground-based passive and active remote sensing springtime (May 2019) retrievals with microphysical surface-based measurements in the Lhù'ààn Mân' region in order to better understand the potential for ground- and satellite-based remote sensing of HLD plumes. This included correlation analyses between ground-based coarse mode (CM) aerosol optical depth (AOD) retrievals from AERONET AOD spectra, CM AODs derived from co-located Doppler lidar profiles, and OPS (optical particle sizer) surface measurements of CM particle-volume concentration (vc(0)). An automated dust classification scheme was developed to objectively identify local dust events. The classification process helped distinguish lidar-derived CM AODs which covaried with vdust(0) (during recognized dust events) and those that varied at the same columnar scale as AERONET-derived CM AOD (and thus could be remotely sensed). False positive cloud events for dust-induced, high-frequency variations in lidar-derived CM AODs in cloudless atmospheres indicated that the AERONET cloud-screening process was rejecting CM dust AODs. The persistence of a positive lidar ratio bias in comparing the CIMEL/lidar-derived value with a prescribed value obtained from OPS-derived particle sizes coupled with dust-speciation-derived refractive indices led to the suggestion that the prescribed value could be increased to optically derived values of 20 sr by the presence of optically significant dust particles at an effective radius of 11–12 µm. Bimodal CM PSDs (see Appendix B for a glossary) from full-fledged AERONET inversions (the combination of AOD spectra and almucantar radiances) also showed CM peaks at ∼ 1.3 and 5–6.6 µm radius: this, we argue, was associated with springtime Asian dust and Lhù'ààn Mân' dust, respectively. Correlations between the CIMEL-derived fine mode (FM) AOD and FM OPS-derived particle-volume concentrations suggest that remote sensing techniques can be employed to monitor FM dust (which is arguably a better indicator of the long-distance transport of HLD).</p

    Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Get PDF
    International audienceThe Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance

    CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients

    Get PDF
    Patients with UICC stage II colorectal cancer (CRC) have a risk of approximately 20% to develop disease recurrence after tumour resection. The presence and significance of micrometastases for locoregional recurrence in these patients lacking histopathological lymph node involvement on routine stained HE sections is undefined. Oestrogen receptor (ER) promoter methylation has earlier been identified in CRC. Therefore, we evaluated the methylation status of the ER promoter in lymph nodes from 49 patients with CRC UICC stage I and II as a molecular marker of micrometastases and predictor of local recurrence. DNA from 574 paraffin-embedded lymph nodes was isolated and treated with bisulphite. For the detection of methylated ER promoter sequences, quantitative real-time methylation-specific PCR was used. Of the 49 patients tested, 15 (31%) had ER methylation-positive lymph nodes. Thirteen of those (86%) remained disease free and two (14%) developed local recurrence. In the resected lymph nodes of 34 of the 49 patients (69%), no ER promoter methylation could be detected and none of these patients experienced a local relapse. The methylation status of the ER promoter in lymph nodes of UICC stage I and II CRC patients may be a useful marker for the identification of patients at a high risk for local recurrence

    Wolbachia-Induced Unidirectional Cytoplasmic Incompatibility and Speciation: Mainland-Island Model

    Get PDF
    Bacteria of the genus Wolbachia are among the most common endosymbionts in the world. In many insect species these bacteria induce a sperm-egg incompatibility between the gametes of infected males and uninfected females, commonly called unidirectional cytoplasmic incompatibility (CI). It is generally believed that unidirectional CI cannot promote speciation in hosts because infection differences between populations will be unstable and subsequent gene flow will eliminate genetic differences between diverging populations. In the present study we investigate this question theoretically in a mainland-island model with migration from mainland to island. Our analysis shows that (a) the infection polymorphism is stable below a critical migration rate, (b) an (initially) uninfected “island” can better maintain divergence at a selected locus (e.g. can adapt locally) in the presence of CI, and (c) unidirectional CI selects for premating isolation in (initially) uninfected island populations if they receive migration from a Wolbachia-infected mainland. Interestingly, premating isolation is most likely to evolve if levels of incompatibility are intermediate and if either the infection causes fecundity reductions or Wolbachia transmission is incomplete. This is because under these circumstances an infection pattern with an infected mainland and a mostly uninfected island can persist in the face of comparably high migration. We present analytical results for all three findings: (a) a lower estimation of the critical migration rate in the presence of local adaptation, (b) an analytical approximation for the gene flow reduction caused by unidirectional CI, and (c) a heuristic formula describing the invasion success of mutants at a mate preference locus. These findings generally suggest that Wolbachia-induced unidirectional CI can be a factor in divergence and speciation of hosts
    corecore