2,363 research outputs found

    Novel CCII-based Field Programmable Analog Array and its Application to a Sixth-Order Butterworth LPF

    Get PDF
    In this paper, a field programmable analog array (FPAA) is proposed. The proposed FPAA consists of seven configurable analog blocks (CABs) arranged in a hexagonal lattice such that the CABs are directly connected to each other. This structure improves the overall frequency response of the chip by decreasing the parasitic capacitances in the signal path. The CABS of the FPAA is based on a novel fully differential digitally programmable current conveyor (DPCCII). The programmability of the DPCCII is achieved using digitally controlled three-bit MOS ladder current division network. No extra biasing circuit is required to generate specific analog control voltage signals. The DPCCII has constant standby power consumption, offset voltage, bandwidth and harmonic distortions over all its programming range. A sixth-order Butterworth tunable LPF suitable for WLAN/WiMAX receivers is realized on the proposed FPAA. The filter power consumption is 5.4mW from 1V supply; it’s cutoff frequency is tuned from 5.2 MHz to 16.9 MHz. All the circuits are realized using 90nm CMOS technology from TSMC. All simulations are carried out using Cadence

    Sesame seed sensitization in a group of atopic Egyptian children

    Get PDF
    Background: There are no published data on the prevalence of sesame allergy/sensitization in Egypt. Objective: In this pilot study, we thought to estimate the frequency of sesame seed sensitization in a group of atopic Egyptian infants and children. Methods: We consecutively enrolled 90 patients with physician diagnosed allergic disease. The study measurements included clinical evaluation for the site and duration of allergy, history suggestive of sesame seed allergy, and family history of allergy, as well as skin prick testing (SPT) using a commercial sesame extract, and serum sesame specific IgE (SpIgE) estimation. Results: None of the studied patients reported symptoms suggestive of sesame seed allergy. Nevertheless, two children (2.2%) showed positive SPT response to sesame (wheal diameter ≥ 3 mm above the negative control). Only one of them had a wheal diameter which exceeded that of the histamine control. The serum sesame SpIgE exceeded 0.35 IU/ml in all subjects [range = 0.35 - 3.0 IU/ml; median (IQR) = 0.9 (0.6) IU/ml]. Serum sesame SpIgE was significantly increased in patients with history of recurrent urticaria (p=0.03). Conclusion: Sesame seed sensitization is not uncommon in atopic Egyptian children. It can be associated with any clinical form of allergy and the causal relationship needs meticulous evaluation. Wider scale population-based studies are needed to assess the prevalence of sesame allergy and its clinical correlates in our country.Keywords: Food allergy, sesame, atopic children

    Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies

    Get PDF
    This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated

    Влияние Магнитного Поля На Реологические Свойства Растворов Эфиров Целлюлозы

    Full text link
    The rheological properties, structure and phase transitions of hydroxypropyl cellulose in ethanol, dimethyl sulfoxide, ethylene glycol solutions and ethylcellulose in dimethylformamide so-lutions are studied using viscometry, the cloud-point method, polarization microscopy, the optical interferometry and a polarization photoelectric apparatus in the temperature range 280-360 K. The temperature-concentration regions of isotropic and anisotropic phases are determined for all sys-tems. The type of boundary curves of phase diagrams is compared with the chemical structure of macromolecules. It is shown that the constant magnetic field (3.6 kOe) leads to the orientation of macromolecules in solutions. The domain structure arising in solutions is fixed after evaporation of a solvent and shown in orientation of strips of the film relief. It was found that the flow curves of all solutions at 298 K in the range of shear rates from 0 to 15 s-1 are typically for the non-Newtonian liquids. It was found that the magnetic field leads to an increase in the viscosity of isotropic solutions and a decrease in the viscosity of anisotropic solutions. Both effects depend on the direction of the magnetic field lines. When the rotor-rotation axis is parallel to the direction of power lines of the magnetic field the change in the viscosity of solutions is greater than that at perpendicular orientation of the rotor-rotation axis and power lines of the magnetic field. The re-sults are discussed using representations about the changes in the macromolecule conformation and in the size and shape of the supramolecular particles in the solutions during flow under a magnetic field with different orientation of the power lines © 2021, ChemChemTech. All Rights Reserved

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning

    Get PDF
    A novel (scalable) electrospinning process was developed to fabricate bio-inspired multiscale three-dimensional scaffolds endowed with a controlled multimodal distribution of fiber diameters and geared towards soft tissue engineering. The resulting materials finely mingle nano- and microscale fibers together, rather than simply juxtaposing them, as is commonly found in the literature. A detailed proof of concept study was conducted on a simpler bimodal poly(ε-caprolactone) (PCL) scaffold with modes of fiber distribution at 600 nm and 3.3 μm. Three conventional unimodal scaffolds with mean diameters of 300 nm and 2.6 and 5.2 μm, respectively, were used as controls to evaluate the new materials. Characterization of the microstructure (i.e. porosity, fiber distribution and pore structure) and mechanical properties (i.e. stiffness, strength and failure mode) indicated that the multimodal scaffold had superior mechanical properties (Young's modulus ∼40 MPa and strength ∼1 MPa) in comparison with the controls, despite the large porosity (∼90% on average). A biological assessment was conducted with bone marrow stromal cell type (mesenchymal stem cells, mTERT-MSCs). While the new material compared favorably with the controls with respect to cell viability (on the outer surface), it outperformed them in terms of cell colonization within the scaffold. The latter result, which could neither be practically achieved in the controls nor expected based on current models of pore size distribution, demonstrated the greater openness of the pore structure of the bimodal material, which remarkably did not come at the expense of its mechanical properties. Furthermore, nanofibers were seen to form a nanoweb bridging across neighboring microfibers, which boosted cell motility and survival. Lastly, standard adipogenic and osteogenic differentiation tests served to demonstrate that the new scaffold did not hinder the multilineage potential of stem cells. © 2009 Acta Materialia Inc

    Symbolic analysis of analog circuits containing voltage mirrors

    Get PDF
    7 páginas, 7 figuras, 2 tablas, 4 imágenes.-- Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.The pathological elements voltage mirror (VM) and current mirror (CM) have shown advantages in analog behavioral modeling and circuit synthesis, where many nullor-mirror equivalences have been explored to design and to transform voltage-mode circuits to current-mode ones and viceversa. However, both the VM and CM have not equivalents to perform automatic symbolic circuit analysis. In this manner, we introduce nullor-equivalents for these pathological elements allowing to include parasitics and to perform only symbolic nodal analysis. The nullor-equivalent of the CM is extended to provide multiple-outpus (MO-CM). Finally, two active filters containing VMs, CMs and MO-CMs are analysed to show the usefulness of the models.This work is supported by: UC-MEXUS and CONACyT under grants CN-09-310 and 48396-Y; by Promep-Mexico under grant UATLX-PTC-088; by Consejeria de Innovacion, Ciencia y Empresa, Junta de Andalucia-Spain TIC-2532; and by the JAE-Doc program of CSIC co-funded by FSE, Spain.Peer reviewe
    corecore