375 research outputs found

    Tumor transfection after systemic injection of DNA lipid nanocapsules

    Get PDF
    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma

    Get PDF
    BACKGROUND: Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR) and lower 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. METHODS: Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5αR type 1 (SRD5A1), 5αR type 2 (SRD5A2), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 20α-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. RESULTS: Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3α-HSO2, 3α-HSO3 and 20α-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5αR1 and 5αR2 were about 35–85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5αR were significantly higher than the ratios for the HSOs. CONCLUSIONS: The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1) and SRD5A2 (5αR2) is elevated, and expression of AKR1C1 (20α-HSO), AKR1C2 (3α-HSO3) and AKR1C3 (3α-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5αP and decreases in mitogen/metastasis inhibiting 3αHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer

    Measuring disease-specific quality of life in rare populations: a practical approach to cross-cultural translation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disease-specific quality of life (QoL) measures have enhanced the capacity of outcome measures to evaluate subtle changes and differences between groups. However, when the specific disease is rare, the cohort of patients is small and international collaboration is often necessary to accomplish meaningful research. As many of the QoL measures have been developed in North American English, they require translation to ensure their usefulness in a multi-cultural and/or international society. Published guidelines provide formal methods to achieve cross-culturally comparable versions of a QoL tool. However, these guidelines describe a rigorous process that is not always feasible, particularly in rare disease groups. The objective of this manuscript is to describe the process that was developed to achieve accurate cross-cultural translations of a disease-specific QoL measure, to overcome the challenges of a small sample size, i.e. children with a rare disorder.</p> <p>Procedure</p> <p>A measurement study was conducted in the United Kingdom (UK), France, Germany and Uruguay, during which the validated measure was translated into the languages of the respective countries.</p> <p>Results</p> <p>This is a report of a modified, child-centric, cross-cultural translation and adaptation process in which culturally appropriate and methodologically valid translations of a disease-specific QoL measure, the Kids' ITP Tools (KIT), were performed in children with immune thrombocytopenic purpura (ITP). The KIT was translated from North American English into UK English, French, German, and Spanish.</p> <p>Conclusion</p> <p>This study was a successful international collaboration. The modified process through which culturally appropriate and methodologically valid translations of QoL measures may be achieved in a pediatric population with a relatively rare disorder is reported.</p

    Activity and expression of progesterone metabolizing 5α-reductase, 20α-hydroxysteroid oxidoreductase and 3α(β)-hydroxysteroid oxidoreductases in tumorigenic (MCF-7, MDA-MB-231, T-47D) and nontumorigenic (MCF-10A) human breast cancer cells

    Get PDF
    BACKGROUND: Recent observations indicate that human tumorous breast tissue metabolizes progesterone differently than nontumorous breast tissue. Specifically, 5α-reduced metabolites (5α-pregnanes, shown to stimulate cell proliferation and detachment) are produced at a significantly higher rate in tumorous tissue, indicating increased 5α-reductase (5αR) activity. Conversely, the activities of 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO enzymes appeared to be higher in normal tissues. The elevated conversion to 5α-pregnanes occurred regardless of estrogen (ER) or progesterone (PR) receptor levels. To gain insight into these differences, the activities and expression of these progesterone converting enzymes were investigated in a nontumorigenic cell line, MCF-10A (ER- and PR-negative), and the three tumorigenic cell lines, MDA-MB-231 (ER- and PR-negative), MCF-7 and T-47D (ER- and PR-positive). METHODS: For the enzyme activity studies, either whole cells were incubated with [(14)C]progesterone for 2, 4, 8, and 24 hours, or the microsomal/cytosolic fraction was incubated for 15–60 minutes with [(3)H]progesterone, and the metabolites were identified and quantified. Semi-quantitative RT-PCR was employed to determine the relative levels of expression of 5αR type1 (SRD5A1), 5αR type 2 (SRD5A2), 20α-HSO (AKR1C1), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 3β-HSO (HSD3B1/HSD3B2) in the four cell lines using 18S rRNA as an internal control. RESULTS: The relative 5α-reductase activity, when considered as a ratio of 5α-pregnanes/4-pregnenes, was 4.21 (± 0.49) for MCF-7 cells, 6.24 (± 1.14) for MDA-MB-231 cells, 4.62 (± 0.43) for T-47D cells and 0.65 (± 0.07) for MCF-10A cells, constituting approximately 6.5-fold, 9.6-fold and 7.1 fold higher conversion to 5α-pregnanes in the tumorigenic cells, respectively, than in the nontumorigenic MCF-10A cells. Conversely, the 20α-HSO and 3α-HSO activities were significantly higher (p < 0.001) in MCF-10A cells than in the other three cell types. In the MCF-10A cells, 20α-HSO activity was 8-14-fold higher and the 3α-HSO activity was 2.5-5.4-fold higher than in the other three cell types. The values of 5αR:20α-HSO ratios were 16.9 – 32.6-fold greater and the 5αR:3α-HSO ratios were 5.2 – 10.5-fold greater in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. RT-PCR showed significantly higher expression of 5αR1 (p < 0.001), and lower expression of 20α-HSO (p < 0.001), 3α-HSO2 (p < 0.001), 3α-HSO3 (p < 0.001) in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. CONCLUSION: The findings provide the first evidence that the 5αR activity (leading to the conversion of progesterone to the cancer promoting 5α-pregnanes) is significantly higher in the tumorigenic MCF-7, MDA-MB-231 and T-47D breast cell lines than in the nontumorigenic MCF-10A cell line. The higher 5αR activity coincides with significantly greater expression of 5αR1. On the other hand, the activities of 20α-HSO and 3α-HSO are higher in the MCF-10A cells than in MCF-7, MDA-MB-231 and T-47D cells; these differences in activity correlate with significantly higher expression of 20α-HSO, 3α-HSO2 and 3α-HSO3 in MCF-10A cells. Changes in progesterone metabolizing enzyme expression (resulting in enzyme activity changes) may be responsible for stimulating breast cancer by increased production of tumor-promoting 5α-pregnanes and decreased production of anti-cancer 20α – and 3α-4-pregnenes

    The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    Get PDF
    International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps

    An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors

    Get PDF
    Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines
    corecore