45 research outputs found

    Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd3_3

    Full text link
    Strong angle-dependent intensity variations of the Fermi-level feature are observed in 4d - 4f resonant photoemission spectra of CePd3_3(111), that reveal the periodicity of the lattice and largest intensity close to the Gamma points of the surface Brillouin zone. In the framework of a simplified periodic Anderson model the phenomena may quantitatively be described by a wave-vector dependence of the electron hopping matrix elements caused by Fermi-level crossings of non-4f-derived energy bands

    CeFePO: f-d hybridization and quenching of superconductivity

    Get PDF
    Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectroscopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.Comment: 5 pages, 3 figure

    How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view

    Get PDF
    Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid

    Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2

    Full text link
    We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements, as well as photoemission spectroscopy. The results evidence a complex magnetic phase diagram, with a non-monotonic evolution of T_N and two successive transitions for some compositions resulting in two tricritical points. The strong similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co substitution basically corresponds to the application of positive chemical pressure. Analysis of the data proves a strong reduction of the Kondo temperature T_K with increasing Co content, T_K becoming smaller than T_N for x ~ 0.5, implying a strong localization of the 4f electrons. Furthermore, low-temperature susceptibility data confirm a competition between ferromagnetic and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an excellent experimental opportunity to gain a deeper understanding of the magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure

    Band Calculations for Ce Compounds with AuCu3_{3}-type Crystal Structure on the basis of Dynamical Mean Field Theory I. CePd3_{3} and CeRh3_{3}

    Full text link
    Band calculations for Ce compounds with the AuCu3_{3}-type crystal structure were carried out on the basis of dynamical mean field theory (DMFT). The auxiliary impurity problem was solved by a method named NCAf2f^{2}vc (noncrossing approximation including the f2f^{2} state as a vertex correction). The calculations take into account the crystal-field splitting, the spin-orbit interaction, and the correct exchange process of the f1f0,f2f^{1} \rightarrow f^{0},f^{2} virtual excitation. These are necessary features in the quantitative band theory for Ce compounds and in the calculation of their excitation spectra. The results of applying the calculation to CePd3_{3} and CeRh3_{3} are presented as the first in a series of papers. The experimental results of the photoemission spectrum (PES), the inverse PES, the angle-resolved PES, and the magnetic excitation spectra were reasonably reproduced by the first-principles DMFT band calculation. At low temperatures, the Fermi surface (FS) structure of CePd3_{3} is similar to that of the band obtained by the local density approximation. It gradually changes into a form that is similar to the FS of LaPd3_{3} as the temperature increases, since the 4f4f band shifts to the high-energy side and the lifetime broadening becomes large.}Comment: 12 pasges, 13 figure

    Divalent EuRh2Si2 as a reference for the Luttinger theorem and antiferromagnetism in trivalent heavy-fermion YbRh2Si2

    Get PDF
    Application of the Luttinger theorem to the Kondo lattice YbRh2Si2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh2Si2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh2Si2 has a large FS essentially similar to the one seen in YbRh2Si2 down to 1 K. In EuRh2Si2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh2Si2 indicate that the formation of the AFM state in YbRh2Si2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system

    Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

    Full text link
    We report on existence of superconductivity in YIr2Si2 and LaIr2Si2 compounds in relation to crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high temperature polymorph (HTP) adopts the CaBe2Ge2-structure type (space group P4/nmm) while the low temperature polymorph (LTP) is of the ThCr2Si2 type (I4/mmm). By studying polycrystals prepared by arc melting we have observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at 900C followed by slow cooling to RT provides the LTP. Both, the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility and specific heat measurements. The HTP and LTP of both compounds respectively, behave as Pauli paramagnets. Superconductivity has been found exclusively in the HTP of both compounds below Tsc (= 2.52 K in YIr2Si2 and 1.24 K in LaIr2Si2). The relations of magnetism and superconductivity with the electronic and crystal structure are discussed with comparing experimental data with the results of first principles electronic structure calculations
    corecore