136 research outputs found

    A first attempt to produce proteins from insects by means of a circular economy

    Get PDF
    The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF\u2014 black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment

    Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples

    Get PDF
    To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a state of the art creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretatio

    Use of small specimen creep data in component life management: a review

    Get PDF
    Small specimen creep testing techniques are novel mechanical test techniques that have been developed over the past 25 years. They mainly include the sub-size uniaxial test, the small punch creep test, the impression creep test, the small ring creep test and the two-bar creep test. This paper outlines the current methods in practice for data interpretation as well as the state-of-the-art procedures for conducting the tests. Case studies for the use of impression creep testing and material strength ranking of creep resistant steels are reviewed along with the requirement for the standardisation of the impression creep test method. A database of small specimen creep testing is required to prove the validity of the tests

    5-Formylcytosine can be a stable DNA modification in mammals.

    Get PDF
    5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.This work was supported by the Cancer Research UK (C14303/A17197, S.B.), The Wellcome Trust (WT099232, S.B.; WT095645/Z/11/Z, W.R.) and the BBSRC (BB/K010867/1, W.R.).This is the accepted manuscript. It is currently embargoed pending publication

    A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells

    Get PDF
    MBD4 binds to methylated DNA and acts as a thymine DNA glycosylase in base excision repair. Deficiency of MBD4 in mice enhances mutation at CpG sites and alters apoptosis in response to DNA damage, but does not increase tumorigenesis in mismatch repair-deficient mice. However, in humans, frameshift mutation of MBD4, rather than deletion, is what occurs in up to 43% of microsatellite unstable colon cancers. There is no murine equivalent of this mutation. We now show that recombinant truncated MBD4 (MBD4tru) inhibits glycosylase activities of normal MBD4 or Uracil DNA glycosylase in cell-free assays as a dominant negative effect. Furthermore, overexpression of MBD4tru in Big Blue (lacI)-transfected, MSI human colorectal carcinoma cells doubled mutation frequency, indicating that the modest dominant negative effect on DNA repair can occur in living cells in short-term experiments. Intriguingly, the whole mutation spectrum was increased, not only at CpG sites, suggesting that truncated MBD4 has a more widespread effect on genomic stability. This demonstration of a dominant negative effect may be of significance in tumour progression and acquisition of drug resistance

    Dose Dependent Effects on Cell Cycle Checkpoints and DNA Repair by Bendamustine

    Get PDF
    Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 µM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway

    A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    Get PDF
    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and \u3b23 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity
    corecore