100 research outputs found

    Plans for Farm and Ranch Homes in Texas.

    Get PDF
    34pg

    The Asymptotic distribution of circles in the orbits of Kleinian groups

    Full text link
    Let P be a locally finite circle packing in the plane invariant under a non-elementary Kleinian group Gamma and with finitely many Gamma-orbits. When Gamma is geometrically finite, we construct an explicit Borel measure on the plane which describes the asymptotic distribution of small circles in P, assuming that either the critical exponent of Gamma is strictly bigger than 1 or P does not contain an infinite bouquet of tangent circles glued at a parabolic fixed point of Gamma. Our construction also works for P invariant under a geometrically infinite group Gamma, provided Gamma admits a finite Bowen-Margulis-Sullivan measure and the Gamma-skinning size of P is finite. Some concrete circle packings to which our result applies include Apollonian circle packings, Sierpinski curves, Schottky dances, etc.Comment: 31 pages, 8 figures. Final version. To appear in Inventiones Mat

    Some Performance Characteristics of Subsurface Gravel Wetlands for Stormwater Management

    Get PDF
    Subsurface gravel wetlands were originally purposed for wastewater treatment and more recently have been used for stormwater treatment as a green infrastructure technology. Systems are sized to hold the water quality volume above, and drain within 24–48 hours. Design guidance follows static sizing principles with very little hydraulic calculations, which has left a gap in hydraulic performance data. Data from 12 years of field monitoring of various systems constructed in the northeast United States is presented. These systems include fully-sized as well as undersized (hold less that the water quality volume). Hydraulics are controlled by a restrictive outlet. At the same time, this outlet also creates the wetland characteristics of the system. Pollutant removal efficiencies for common stormwater pollutants are some of the highest for green infrastructure systems, with a significant component being microbially-mediated in the low dissolved oxygen gravel layers. This is a book chapter published by the American Society of Civil Engineers in World Environmental and Water Resources Congress 2020: Emerging and Innovative Technologies and International Perspectives in 2020, available online: https://doi.org/10.1061/978078448294

    Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals

    Full text link
    We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure

    Kepler-102 : masses and compositions for a super-Earth and sub-Neptune orbiting an active star

    Get PDF
    Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1842402. C.L.B., L.W., and D.H. acknowledge support from National Aeronautics and Space Administration (grant No. 80NSSC19K0597) issued through the Astrophysics Data Analysis Program. D.H. also acknowledges support from the Alfred P. Sloan Foundation. K.R. acknowledges support from the UK STFC via grant No. ST/V000594/1. E.G. acknowledges support from NASA grant No. 80NSSC20K0957 (Exoplanets Research Program).Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limit Md < 5.3 M⊕ (95% confidence), a best-fit mass Md = 2.5 ± 1.4 M⊕, and a density ρd = 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a mass Me = 4.7 ± 1.7 M⊕ and a density ρe = 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.Publisher PDFPeer reviewe

    TESS Asteroseismology of α\alpha Mensae: Benchmark Ages for a G7 Dwarf and its M-dwarf Companion

    Full text link
    Asteroseismology of bright stars has become increasingly important as a method to determine fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint, and therefore have limited constraints from independent methods such as long-baseline interferometry. Here, we present the discovery of solar-like oscillations in α\alpha Men A, a naked-eye (V=5.1) G7 dwarf in TESS's Southern Continuous Viewing Zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog alpha Men A (Teff = 5569 +/- 62 K, R = 0.960 +/- 0.016 Rsun, M = 0.964 +/- 0.045 Msun). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M = 0.169 +/- 0.006, R = 0.19 +/- 0.01 and Teff = 3054 +/- 44 K. Our asteroseismic age of 6.2 +/- 1.4 (stat) +/- 0.6 (sys) Gyr for the primary places α\alpha Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of 13.1 +/- 1.1 years, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ~30 days for the primary. Alpha Men A is now the closest (d=10pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct imaging missions searching for true Earth analogs.Comment: Accepted to The Astrophysical Journal; 15 pages, 10 figure

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.5−1.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    The TESS-Keck Survey II: An Ultra-Short Period Rocky Planet and its Siblings Transiting the Galactic Thick-Disk Star TOI-561

    Full text link
    We report the discovery of TOI-561, a multi-planet system in the galactic thick disk that contains a rocky, ultra-short period planet (USP). This bright (V=10.2V=10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P=0.44 days, Rb=1.45±0.11 R⊕R_b = 1.45\pm0.11\,R_\oplus), c (TOI-561.01, P=10.8 days, Rc=2.90±0.13 R⊕R_c=2.90\pm0.13\,R_\oplus), and d (TOI-561.03, P=16.3 days, Rd=2.32±0.16 R⊕R_d=2.32\pm0.16\,R_\oplus). The star is chemically ([Fe/H]=−0.41±0.05=-0.41\pm0.05, [α\alpha/H]=+0.23±0.05=+0.23\pm0.05) and kinematically consistent with the galactic thick disk population, making TOI-561 one of the oldest (10±3 10\pm3\,Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2±0.8 M⊕3.2\pm0.8\,M_\oplus and 5.5−1.6+2.0 5.5^{+2.0}_{-1.6}\,g \,cm−3^{-3}, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0±2.3 M⊕7.0\pm2.3\,M_\oplus and 1.6±0.6 1.6\pm0.6\,g \,cm−3^{-3}, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.Comment: Accepted at The Astronomical Journal; 25 pages, 10 figure
    • 

    corecore