157 research outputs found

    Plasmon resonances of highly doped two-dimensional MoS2

    Get PDF
    The exhibition of plasmon resonances in two-dimensional (2D) semiconductor compounds is desirable for many applications. Here, by electrochemically intercalating lithium into 2D molybdenum disulfide (MoS2) nanoflakes, plasmon resonances in the visible and near UV wavelength ranges are achieved. These plasmon resonances are controlled by the high doping level of the nanoflakes after the intercalation, producing two distinct resonance peak areas based on the crystal arrangements. The system is also benchmarked for biosensing using bovine serum albumin. This work provides a foundation for developing future 2D MoS2 based biological and optical units

    Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes

    Get PDF
    Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (ĂŽÎŒ > 109 L mol-1 cm-1). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices

    Census politics in deeply divided societies

    Get PDF
    Population censuses in societies that are deeply divided along ethnic, religious or linguistic lines can be sensitive affairs – particularly where political settlements seek to maintain peace through the proportional sharing of power between groups. This brief sets out some key findings from a research project investigating the relationship between census politics and the design of political institutions in Bosnia and Herzegovina, Kenya, Lebanon and Northern Ireland

    Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies.

    Get PDF
    Across multiple disciplines undertaking airway management globally, preventable episodes of unrecognised oesophageal intubation result in profound hypoxaemia, brain injury and death. These events occur in the hands of both inexperienced and experienced practitioners. Current evidence shows that unrecognised oesophageal intubation occurs sufficiently frequently to be a major concern and to merit a co-ordinated approach to address it. Harm from unrecognised oesophageal intubation is avoidable through reducing the rate of oesophageal intubation, combined with prompt detection and immediate action when it occurs. The detection of 'sustained exhaled carbon dioxide' using waveform capnography is the mainstay for excluding oesophageal placement of an intended tracheal tube. Tube removal should be the default response when sustained exhaled carbon dioxide cannot be detected. If default tube removal is considered dangerous, urgent exclusion of oesophageal intubation using valid alternative techniques is indicated, in parallel with evaluation of other causes of inability to detect carbon dioxide. The tube should be removed if timely restoration of sustained exhaled carbon dioxide cannot be achieved. In addition to technical interventions, strategies are required to address cognitive biases and the deterioration of individual and team performance in stressful situations, to which all practitioners are vulnerable. These guidelines provide recommendations for preventing unrecognised oesophageal intubation that are relevant to all airway practitioners independent of geography, clinical location, discipline or patient type

    High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes

    Get PDF
    Planar 2D materials are possibly the ideal channel candidates for future field effect transistors (FETs), due to their unique electronic properties. However, the performance of FETs based on 2D materials is yet to exceed those of conventional silicon based devices. Here, a 2D channel thin film made from liquid phase exfoliated molybdenum oxide nanoflake inks with highly controllable substoichiometric levels is presented. The ability to induce oxygen vacancies by solar light irradiation in an aqueous environment allows the tuning of electronic properties in 2D substoichiometric molybdenum oxides (MoO3-x). The highest mobility is found to be approximate to 600 cm(2) V-1 s(-1) with an estimated free electron concentration of approximate to 1.6 x 10(21) cm(-3) and an optimal I-On/I-Off ratio of >10(5) for the FETs made of 2D flakes irradiated for 30 min (x = 0.042). These values are significant and represent a real opportunity to realize the next generation of tunable electronic devices using electronic inks

    New candidates for magnetar counterparts from a deep search with the Hubble Space Telescope

    Get PDF
    We report the discovery of six new magnetar counterpart candidates from deep near-infrared Hubble Space Telescope imaging. The new candidates are among a sample of nineteen magnetars for which we present HST data obtained between 2018–2020. We confirm the variability of previously established near-infrared counterparts, and newly identify candidates for PSR J1622-4950, Swift J1822.3-1606, CXOU J171405.7-381031, Swift J1833-0832, Swift J1834.9-0846 and AX J1818.8-1559 based on their proximity to X-ray localisations. The new candidates are compared with the existing counterpart population in terms of their colours, magnitudes, and near-infrared to X-ray spectral indices. We find two candidates for AX J1818 which are both consistent with previously established counterparts. The other new candidates are likely to be chance alignments, or otherwise have a different origin for their near-infrared emission not previously seen in magnetar counterparts. Further observations and studies of these candidates are needed to firmly establish their nature

    Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames

    Get PDF
    The past few decades have seen the burgeoning of wide field, high cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy, however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO), whose primary science objective is the optical follow-up of Gravitational Wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near real-time to fully exploit the time-domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this "off-the-shelf" pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to sub-pixel levels, and that measured L-band photometries are accurate to ∌50 mmag at mL∌16 and ∌200 mmag at mL∌18. These values compare favourably to those obtained using GOTO's primary, in-house pipeline, GOTOPHOTO, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic "obs package" that others can build-upon should they wish to use the LSST Science Pipelines to process data from other facilities

    Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions

    Get PDF
    It is well established that magnetars are neutron stars with extreme magnetic fields and young ages, but the evolutionary pathways to their creation are still uncertain. Since most massive stars are in binaries, if magnetars are a frequent result of core-collapse supernovae, some fraction are expected to have a bound companion at the time of observation. In this paper, we utilize literature constraints, including deep Hubble Space Telescope imaging, to search for bound stellar companions to magnetars. The magnitude and colour measurements are interpreted in the context of binary population synthesis predictions. We find two candidates for stellar companions associated with CXOU J171405.7–381031 and SGR 0755–2933, based on their J-H colours and H-band absolute magnitudes. Overall, the proportion of the Galactic magnetar population with a plausibly stellar near-infrared counterpart candidate, based on their magnitudes and colours, is between 5 and 10 per cent. This is consistent with a population synthesis prediction of 5 per cent, for the fraction of core-collapse neutron stars arising from primaries which remain bound to their companion after the supernova. These results are therefore consistent with magnetars being drawn in an unbiased way from the natal core-collapse neutron star population, but some contribution from alternative progenitor channels cannot be ruled out

    Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-wave Optical Transient Observer (GOTO-4)

    Get PDF
    We report the results of optical follow-up observations of 29 gravitational-wave (GW) triggers during the first half of the LIGO–Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope configuration (GOTO-4). While no viable electromagnetic (EM) counterpart candidate was identified, we estimate our 3D (volumetric) coverage using test light curves of on- and off-axis gamma-ray bursts and kilonovae. In cases where the source region was observable immediately, GOTO-4 was able to respond to a GW alert in less than a minute. The average time of first observation was 8.79 h after receiving an alert (9.90 h after trigger). A mean of 732.3 square degrees were tiled per event, representing on average 45.3 per cent of the LVC probability map, or 70.3 per cent of the observable probability. This coverage will further improve as the facility scales up alongside the localization performance of the evolving GW detector network. Even in its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like kilonovae beyond 200 Mpc in favourable observing conditions. We cannot currently place meaningful EM limits on the population of distant (⁠D^L=1.3 Gpc) binary black hole mergers because our test models are too faint to recover at this distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover the predicted O4 binary neutron star merger volume, and will be able to respond to both northern and southern triggers
    • 

    corecore