157 research outputs found
Recognition of Bromus Richardsonii and B. Ciliatus: Evidence from Morphology, Cytology, and DNA Fingerprinting (Poaceae: Bromeae)
Since our goal was to determine characteristic differences between Bromus richardsonii and B. ciliates, a discriminate analysis (DA), principal components analysis (PCA), multidimensional scaling (MDS), bivariate analysis, and an amplified fragment length polymorphisms (AFLP) analysis were undertaken on 93 herbarium specimens and 31 field-collected populations. A cytological survey of B. ciliates, B. richardsonii, and B. mucroglumis confirm previous reports that the first species is diploid (2n = 14) and the latter two are tetraploid (2n = 28). All taxa were correctly classified in the DA and important characters for each of the species were identified. Bromus richardsonii has lemmas with scattered hairs on the lower half between the mid nerve and margins [glabrous in B. ciliatus], anthers (1.2) 1.6-2.7 (3.4) mm long [(0.9) 1-1.4 (1.6) mm long in B. ciliatus], second glumes (7.8) 8.9 - 11.3 (13.2) mm long [(6.2) 7.1-8.5 (9.5) in B. ciliatus); and basal sheaths with dense, short to medium hairs [glabrous or with long hairs in B. ciliatus]. The PCA easily separated B. ciliatus and B. richardsonii into two well-defined groups and MDS mirrored the principal components analysis but displayed more overlap of individuals between the two groups. The AFLP-derived UPGMA dendrogram separated 154 individuals into two distinct clusters, one consisting entirely of B. ciliatus individuals and the other consisting of B. richardsonii individuals with six individuals of B. mucroglumis embedded within. Our study clearly indicates that there are distinctive morphological, cytological, and genetic differences to distinguish B. richardsonii and B. ciliatus as separate species
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors
We have constructed a GEANT4-based detailed software model of photon
transport in plastic scintillator blocks and have used it to study the NEMO-3
and SuperNEMO calorimeters employed in experiments designed to search for
neutrinoless double beta decay. We compare our simulations to measurements
using conversion electrons from a calibration source of and show
that the agreement is improved if wavelength-dependent properties of the
calorimeter are taken into account. In this article, we briefly describe our
modeling approach and results of our studies.Comment: 16 pages, 10 figure
Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness
Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness.Foundation Fighting Blindness CanadaCanadian Institutes of Health ResearchNIHCharles University institutional programmesBIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development FundMinistry of Health of the Czech RepublicGraduate School of Life Sciences (University of Wuerzburg)Government of Canada through Genome CanadaOntario Genomics InstituteGenome QuebecGenome British ColumbiaMcLaughlin CentreCharles Univ Prague, Inst Inherited Metab Disorders, Fac Med 1, Prague 12000 2, Czech RepublicMcGill Univ, Dept Human Genet, Fac Med, Montreal, PQ H3A 0G1, CanadaGenome Quebec Innovat Ctr, Montreal, PQ H3A 0G1, CanadaClin Res Inst Montreal, Cellular Neurobiol Res Unit, Montreal, PQ H2W 1R7, CanadaMcGill Univ, Montreal, PQ H3A 0G4, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, McGill Ocular Genet Lab, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Paediat Surg, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Human Genet, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Ophthalmol, Montreal, PQ H3H 1P3, CanadaUniv Alberta, Royal Alexandra Hosp, Dept Ophthalmol & Visual Sci, Edmonton, AB T5H 3V9, CanadaCharles Univ Prague, Inst Biol & Med Genet, Fac Med 1, Prague 12000 2, Czech RepublicBaylor Coll Med, Dept Mol & Human Genet, Human Genome Sequencing Ctr, Houston, TX 77030 USAUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilNewcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, EnglandUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilSo Gen Hosp, Dept Clin Genet, Glasgow G51 4TF, Lanark, ScotlandCardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, WalesHadassah Hebrew Univ Med Ctr, Dept Ophthalmol, IL-91120 Jerusalem, IsraelOregon Hlth & Sci Univ, Oregon Inst Occupat Hlth Sci, Portland, OR 97239 USAUniv Wurzburg, Lehrstuhl Neurobiol & Genet, D-97074 Wurzburg, GermanyUniv Montreal, Dept Med, Montreal, PQ H3T 1P1, CanadaMcGill Univ, Dept Anat & Cell Biol, Div Expt Med, Montreal, PQ H3A 2B2, CanadaUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilNIH: EY022356-01NIH: EY018571-05NIH: NS047663-09Charles University institutional programmes: PRVOUK-P24/LF1/3Charles University institutional programmes: UNCE 204011Charles University institutional programmes: SVV2013/266504BIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development Fund: CZ.1.05/1.1.00/02.0109Ministry of Health of the Czech Republic: NT13116-4/2012Ministry of Health of the Czech Republic: NT14015-3/2013Ontario Genomics Institute: OGI-049Web of Scienc
CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium
Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (JV) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease
Near-Membrane Dynamics and Capture of TRPM8 Channels within Transient Confinement Domains
The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP) family of ion channels are translocated toward the plasma membrane (PM) in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT) is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane.We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF) microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2–8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD) stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability.These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons
Organotypic Culture of Physiologically Functional Adult Mammalian Retinas
BACKGROUND: The adult mammalian retina is an important model in research on the central nervous system. Many experiments require the combined use of genetic manipulation, imaging, and electrophysiological recording, which make it desirable to use an in vitro preparation. Unfortunately, the tissue culture of the adult mammalian retina is difficult, mainly because of the high energy consumption of photoreceptors. METHODS AND FINDINGS: We describe an interphase culture system for adult mammalian retina that allows for the expression of genes delivered to retinal neurons by particle-mediated transfer. The retinas retain their morphology and function for up to six days— long enough for the expression of many genes of interest—so that effects upon responses to light and receptive fields could be measured by patch recording or multielectrode array recording. We show that a variety of genes encoding pre- and post-synaptic marker proteins are localized correctly in ganglion and amacrine cells. CONCLUSIONS: In this system the effects on neuronal function of one or several introduced exogenous genes can be studied within intact neural circuitry of adult mammalian retina. This system is flexible enough to be compatible with genetic manipulation, imaging, cell transfection, pharmacological assay, and electrophysiological recordings
- …