412 research outputs found
Coherent center domains from local Polyakov loops
We analyze properties of local Polyakov loops using quenched as well as
dynamical SU(3) gauge configurations for a wide range of temperatures. It is
demonstrated that for both, the confined and the deconfined regime, the local
Polyakov loop prefers phase values near the center elements 1, exp(i 2 pi/3),
exp(-i 2 pi/3). We divide the lattice sites into three sectors according to
these phases and show that the sectors give rise to the formation of clusters.
For a suitable definition of these clusters we find that in the quenched case
deconfinement manifests itself as the onset of percolation of the clusters. A
possible continuum limit of the center clusters is discussed
The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy
A local and medium range atomic structure model for the face centred
icosahedral (fci) Mg25Y11Zn64 alloy has been established in a sphere of r = 27
A. The model was refined by least squares techniques using the atomic pair
distribution (PDF) function obtained from synchrotron powder diffraction. Three
hierarchies of the atomic arrangement can be found: (i) five types of local
coordination polyhedra for the single atoms, four of which are of Frank-Kasper
type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104
atoms, which is condensed sharing its outer shell with its neighbouring
clusters and (iii) a cluster connecting scheme corresponding to a
three-dimensional tiling leaving space for few glue atoms. Inside adjacent
clusters, Y8-cubes are tilted with respect to each other and thus allow for
overall icosahedral symmetry. It is shown that the title compound is
essentially isomorphic to its holmium analogue. Therefore fci-Mg-Y-Zn can be
seen as the representative structure type for the other rare earth analogues
fci-Mg-Zn-RE (RE = Dy, Er, Ho, Tb) reported in the literature.Comment: 12 pages, 8 figures, 2 table
The Fermat-Torricelli problem in normed planes and spaces
We investigate the Fermat-Torricelli problem in d-dimensional real normed
spaces or Minkowski spaces, mainly for d=2. Our approach is to study the
Fermat-Torricelli locus in a geometric way. We present many new results, as
well as give an exposition of known results that are scattered in various
sources, with proofs for some of them. Together, these results can be
considered to be a minitheory of the Fermat-Torricelli problem in Minkowski
spaces and especially in Minkowski planes. This demonstrates that substantial
results about locational problems valid for all norms can be found using a
geometric approach
The strong thirteen spheres problem
The thirteen spheres problem is asking if 13 equal size nonoverlapping
spheres in three dimensions can touch another sphere of the same size. This
problem was the subject of the famous discussion between Isaac Newton and David
Gregory in 1694. The problem was solved by Schutte and van der Waerden only in
1953.
A natural extension of this problem is the strong thirteen spheres problem
(or the Tammes problem for 13 points) which asks to find an arrangement and the
maximum radius of 13 equal size nonoverlapping spheres touching the unit
sphere. In the paper we give a solution of this long-standing open problem in
geometry. Our computer-assisted proof is based on a enumeration of the
so-called irreducible graphs.Comment: Modified lemma 2, 16 pages, 12 figures. Uploaded program packag
Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study
BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens
Sequence Capture and Next Generation Resequencing of the MHC Region Highlights Potential Transplantation Determinants in HLA Identical Haematopoietic Stem Cell Transplantation
How cells coordinate the immune system activities is important for potentially life-saving organ or stem cell transplantations. Polymorphic immunoregulatory genes, many of them located in the human major histocompatibility complex, impact the process and assure the proper execution of tolerance-versus-activity mechanisms. In haematopoietic stem cell transplantation, on the basis of fully human leukocyte antigen (HLA)-matched donor–recipient pairs, adverse effects like graft versus leukaemia and graft versus host are observed and difficult to handle. So far, high-resolution HLA typing was performed with Sanger sequencing, but for methodological reasons information on additional immunocompetent major histocompatibility complex loci has not been revealed. Now, we have used microarray sequence capture and targeted enrichment combined with next generation pyrosequencing for 3.5 million base pair human major histocompatibility complex resequencing in a clinical transplant setting and describe 3025 variant single nucleotide polymorphisms, insertions and deletions among recipient and donor in a single sequencing experiment. Taken together, the presented data show that sequence capture and massively parallel pyrosequencing can be used as a new tool for risk assessment in the setting of allogeneic stem cell transplantation
The sign problem across the QCD phase transition
The average phase factor of the QCD fermion determinant signals the strength
of the QCD sign problem. We compute the average phase factor as a function of
temperature and baryon chemical potential using a two-flavor NJL model. This
allows us to study the strength of the sign problem at and above the chiral
transition. It is discussed how the anomaly affects the sign problem.
Finally, we study the interplay between the sign problem and the endpoint of
the chiral transition.Comment: 9 pages and 9 fig
Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)
We study a gauge invariant order parameter for deconfinement and the chiral
condensate in SU(2) and SU(3) Yang-Mills theory in the vicinity of the
deconfinement phase transition using the Landau gauge quark and gluon
propagators. We determine the gluon propagator from lattice calculations and
the quark propagator from its Dyson-Schwinger equation, using the gluon
propagator as input. The critical temperature and a deconfinement order
parameter are extracted from the gluon propagator and from the dependency of
the quark propagator on the temporal boundary conditions. The chiral transition
is determined using the quark condensate as order parameter. We investigate
whether and how a difference in the chiral and deconfinement transition between
SU(2) and SU(3) is manifest.Comment: 15 pages, 9 figures. For clarification one paragraph and two
references added in the introduction and two sentences at the end of the
first and last paragraph of the summary. Appeared in EPJ
Psychometric Properties of the Chinese Version of the Perceived Stress Scale in Policewomen
BACKGROUND: The 10-item Perceived Stress Scale (PSS-10) is one of most widely used instruments to measure a global level of perceived stress in a range of clinical and research settings. This study was conducted to examine the psychometric properties of the Simplified Chinese version of the PSS-10 in policewomen. METHODOLOGY: A total of 240 policewomen were recruited in this study. The Simplified Chinese versions of the PSS-10, the Beck Depression Inventory Revised (BDI-II), and the Beck Anxiety Inventory (BAI) were administered to all participants, and 36 of the participants were re-tested two weeks after the initial testing. PRINCIPAL FINDINGS: The overall Cronbach's alpha was 0.86, and the test-retest reliability coefficient was 0.68. Exploratory Factor Analysis (EFA) yielded 2 factors with eigenvalues of 4.76 and 1.48, accounting for 62.41% of variance. Factor 1 consisted of 6 items representing "negative feelings"; whereas Factor 2 consisted of 4 items representing "positive feelings". The item loadings ranged from 0.72 to 0.83. The Confirmatory factor analysis (CFA) indicated a very good fit of this two-factor model to this sample. The PSS-10 significantly correlated with both BDI-II and BAI, indicating an acceptable concurrent validity. CONCLUSIONS: The Simplified Chinese version of the PSS-10 demonstrated adequate psychometric properties for evaluating stress levels. The results support its use among the Chinese population
- …