318 research outputs found

    RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip

    Get PDF
    Supplementary_Material. This docx file contains all supplementary tables and supplementary figures. (DOCX 424 kb

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Children’s screen time alters the expression of saliva extracellular miR-222 and miR-146a

    Get PDF
    An imbalance between energy uptake and energy expenditure is the most important reason for increasing trends in obesity starting from early in life. Extracellular miRNAs are expressed in all bodily fluids and their expression is influenced by a broad range of stimuli. We examined whether screen time, physical activity and BMI are associated with children's salivary extracellular miR-222 and miR-146a expression. In 80 children the extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We studied the association between children's salivary extracellular miRNA expression and screen time, physical activity and BMI using mixed models, while accounting for potential confounders. We found that higher screen time was positively associated with salivary extracellular miR-222 and miR-146a levels. On average, one hour more screen time use per week was associated with a 3.44% higher miR-222 (95% CI: 1.34 to 5.58; p = 0.002) and 1.84% higher miR-146a (95% CI: -0.04 to 3.75; p = 0.055) level in saliva. BMI and physical activity of the child were not significantly associated with either miR-222 or miR-146a. A sedentary behaviour, represented by screen time use in children, is associated with discernible changes in salivary expression of miR-146a and or miR-222. These miRNA targets may emerge attractive candidates to explore the role of these exposures in developmental processes of children's health

    Polycyclic aromatic hydrocarbons (PAHs) and estrogenic compounds in experimental flue gas streams

    Get PDF
    The importance of combustion processes as a source of substances with estrogenic activity in the environment was investigated. Wood (nontreated and treated with wood preservatives), barbecue charcoal, meat, and kitchen waste were combusted in a laboratory-scale incinerator. Flue gas emissions (particulates and gaseous pollutants) were trapped in polyurethane foam cartridges. The cartridges were subjected to Soxhlet extraction and part of the extracts redissolved in dimethylsulfoxide (DMSO) for analyses of estrogenic activity by means of the yeast-based human estrogen receptor (hER) bioassay. A synthetic estrogen, 17-alpha-ethinylestradiol (EE2), was used as the reference estrogenic compound. Part of the extracts was analyzed for the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). Estrogenic compounds in the flue gas (wood) were as high as 234 +/- 25 ng m(-3) EE2 equivalent compared with 27 to 81 ng m(-3) EE2 equivalent in flue gas from combustion of barbecue charcoal. Concentrations of polycyclic aromatic hydrocarbons in both flue gas streams were in the range of 21000 +/- 2000 and 240 +/- 110 ng m(-3), respectively. In general, the concentrations of EE2 equivalent in the flue gas samples were at least a factor of 1000 lower than total PAH concentration. The EE2 levels were not related to the concentration of PAHs in any flue gas sample

    Durability of the Indian Kandla Grey sandstone under Western European climatic conditions

    Get PDF
    An increasing amount of imported natural building stones are being used in Western Europe, often as a replacement of more traditional, local building stones. Unlike for these traditional stones, which have been used under the prevailing climatic conditions in Western Europe, the durability of these imported stones is largely unknown. Therefore, it is essential to study their behaviour under these climatic conditions in order to predict their weathering resistance. The chemical and structural properties of these new building materials need to be determined and their behaviour under changing environmental conditions needs to be studied. When these materials are being used in Western Europe, they have to resist to significant mechanical stresses due to the imbibition of de-icing salt solutions. These de-icing salts are very frequently used during winter in Western Europe, while temperature fluctuates between freezing and thaw conditions. In this research, focus has been laid on the multi-disciplinary characterization of the compact Kandla Grey layered sandstone. This stone is recently frequently imported from India to Belgium. Besides traditional techniques, (according to European Standars for natural stone testing) highly advanced research techniques such as µ-XRF and HRXCT were used to characterize and monitor the changes under different external conditions such as freezing, thawing and salt crystallization. The results of this study demonstrate that the structural properties of the laminations inside Kandla Grey have an influence on the resistance of the stone to frost and salt weathering. Based on these results, it can be concluded that Kandla Grey can be vulnerable to these types of weathering under the current climatic conditions in Western Europe

    The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research

    Get PDF
    In this study, we report the results of a comprehensive phenotyping of the retina of the AppNL-G-F mouse. We demonstrate that soluble Aβ accumulation is present in the retina of these mice early in life and progresses to Aβ plaque formation by midlife. This rising Aβ burden coincides with local microglia reactivity, astrogliosis, and abnormalities in retinal vein morphology. Electrophysiological recordings revealed signs of neuronal dysfunction yet no overt neurodegeneration was observed and visual performance outcomes were unafected in the AppNL-G-F mouse. Furthermore, we show that hyperspectral imaging can be used to quantify retinal Aβ, underscoring its potential as a biomarker for AD diagnosis and monitoring. These fndings suggest that the AppNL-G-F retina mimics the early, preclinical stages of AD, and, together with retinal imaging techniques, ofers unique opportunities for drug discovery and fundamental research into preclinical AD

    Report on the effectiveness of vegetative barriers to regulate simulated fluxes of runoff and sediment in open agricultural landscapes (Flanders, Belgium)

    Full text link
    Vegetative barriers are increasingly used to reduce sediment export from cropland and thus mitigate negative off-site consequences of soil erosion. Here, we report and discuss the effectiveness of vegetative barriers implemented in Flanders (Belgium) to buffer the flows of water and sediment. The three types of vegetative barriers studied are made of straw bales, wood chips or bales of coconut- fibre. Based on three simulated runoff experiments performed in the field, we calculated the hydraulic roughness and sediment deposition ratio. Our experiments showed that the barriers made of coconut-fibre bales performed markedly better than those of straw bales or wood chips (Manning's n values of 1.355, 1.049 and 2.231 s m-1/3 and a sediment deposition ratio of 19%, 38% and 64% for barriers made of straw bales, wood chips and coconut-fibre bales, respectively, during the first experiment). These values increased during subsequent experiments demonstrating the effect of sediment accumulating inside the structures. Especially for coconut-fibre bales, this accumulation increases the risk of runoff bypassing or overtopping the barriers. The barriers mainly retained sand and, to a lesser extent, silt and clay. As vegetative barriers have to be renewed every few years because of the decomposition of organic material, barriers made of locally available materials are more sustainable as a nature-based solution to erosion. We conclude that although the vegetative barriers made of coconut-fibre bales are superior in their regulation of flows of runoff and sediment, barriers made of locally sourced materials are more sustainable. © 2021 John Wiley & Sons, Ltd
    • …
    corecore