3,903 research outputs found

    An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations

    Full text link
    We discuss model reduction for a particular class of quadratic-bilinear (QB) descriptor systems. The main goal of this article is to extend the recently studied interpolation-based optimal model reduction framework for QBODEs [Benner et al. '16] to a class of descriptor systems in an efficient and reliable way. Recently, it has been shown in the case of linear or bilinear systems that a direct extension of interpolation-based model reduction techniques to descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore, for the analysis, we aim at transforming the considered QB descriptor system into an equivalent QBODE system by means of projectors for which standard model reduction techniques for QBODEs can be employed, including aforementioned interpolation scheme. Subsequently, we discuss related computational issues, thus resulting in a modified algorithm that allows us to construct \emph{near}--optimal reduced-order systems without explicitly computing the projectors used in the analysis. The efficiency of the proposed algorithm is illustrated by means of a numerical example, obtained via semi-discretization of the Navier-Stokes equations

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    MORLAB – The Model Order Reduction LABoratory

    Get PDF

    Accelerating BST Methods for Model Reduction with Graphics Processors

    Get PDF
    Model order reduction of dynamical linear time-invariant system appears in many scientific and engineering applications. Numerically reliable SVD-based methods for this task require O(n3) floating-point arithmetic operations, with n being in the range 103 − 105 for many practical applications. In this paper we investigate the use of graphics processors (GPUs) to accelerate model reduction of large-scale linear systems via Balanced Stochastic Truncation, by off-loading the computationally intensive tasks to this device. Experiments on a hybrid platform consisting of state-of-the-art general-purpose multi-core processors and a GPU illustrate the potential of this approach

    Heat driven pulse pump

    Get PDF
    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel
    • …
    corecore