3,417 research outputs found

    Surface location of sodium atoms attached to He-3 nanodroplets

    Get PDF
    We have experimentally studied the electronic 3p3s3p\leftarrow 3s excitation of Na atoms attached to 3^3He droplets by means of laser-induced fluorescence as well as beam depletion spectroscopy. From the similarities of the spectra (width/shift of absorption lines) with these of Na on 4^4He droplets, we conclude that sodium atoms reside in a ``dimple'' on the droplet surface. The experimental results are supported by Density Functional calculations at zero temperature, which confirm the surface location of sodium on 3^3He droplets, and provide a microscopic description of the ``dimple'' structure.Comment: 4 pages, 5 figure

    Dynamics of a superconducting qubit coupled to the quantized cavity field: a unitary transformation approach

    Full text link
    We present a novel approach for studying the dynamics of a superconducting qubit in a cavity. We succeed in linearizing the Hamiltonian through the application of an appropriate unitary transformation followed by a rotating wave approximation (RWA). For certain values of the parameters involved, we show that it is possible to obtain a a Jaynes-Cummings type Hamiltonian. As an example, we show the existence of super-revivals for the qubit inversion

    Study of losses during Continuous Transfer Extraction at CERN Proton Synchrotron

    Get PDF
    The proton beams used for the fixed target physics at the SPS are extracted from the PS at 14 GeV/c in five turns, using a technique called Continuous Transfer (CT). During this extraction, large losses are observed in straight sections were the machine aperture should be large enough to accommodate the circulating beam without any loss. These losses are due to particles scattered by the electrostatic septum used to slice the beam and defocused by a quadrupole used during the extraction. Simulations and experimental results are presented

    Field Purification in the intensity-dependent Jaynes-Cummings model

    Full text link
    We have found that, in the intensity-dependent Jaynes-Cummings model, a field initially prepared in a statistical mixture of two coherent states, α>|\alpha> and α>|-\alpha>, evolves toward a pure state. We have also shown that an even-coherent state turns periodically a into rotated odd-coherent state during the evolution.Comment: 14 pages, RevTex, 3 figures, accepted for publication in Physics Letters

    Beam losses in the PS during CT extraction

    Get PDF
    The proton beams used for the fixed target physics at the SPS are extracted from the PS at 14 GeV/c in five turns, using a technique called Continuous Transfer (CT). During this extraction, large losses are observed in straight sections were the machine aperture should be large enough to accommodate the circulating beam without any loss. These losses are due to particles scattered by the electrostatic septum used to slice the beam and defocused by a quadrupole used during the extraction. Simulations and experimental results are presented

    Zombie Vortex Instability. II. Thresholds to Trigger Instability and the Properties of Zombie Turbulence in the Dead Zones of Protoplanetary Disks

    Full text link
    In Zombie Vortex Instability (ZVI), perturbations excite critical layers in stratified, rotating shear flow (as in protoplanetary disks), causing them to generate vortex layers, which roll-up into anticyclonic zombie vortices and cyclonic vortex sheets. The process is self-sustaining as zombie vortices perturb new critical layers, spawning a next generation of zombie vortices. Here, we focus on two issues: the minimum threshold of perturbations that trigger self-sustaining vortex generation, and the properties of the late-time zombie turbulence on large and small scales. The critical parameter that determines whether ZVI is triggered is the magnitude of the vorticity on the small scales (and not velocity), the minimum Rossby number needed for instability is Rocrit0.2Ro_{crit}\sim0.2 for βN/Ω=2\beta\equiv N/\Omega = 2, where NN is the Brunt-V\"ais\"al\"a frequency. While the threshold is set by vorticity, it is useful to infer a criterion on the Mach number, for Kolmogorov noise, the critical Mach number scales with Reynolds number: MacritRocritRe1/2Ma_{crit}\sim Ro_{crit}Re^{-1/2}. In protoplanetary disks, this is Macrit106Ma_{crit}\sim10^{-6}. On large scales, zombie turbulence is characterized by anticyclones and cyclonic sheets with typical Rossby number \sim0.3. The spacing of the cyclonic sheets and anticyclones appears to have a "memory" of the spacing of the critical layers. On the small scales, zombie turbulence has no memory of the initial conditions and has a Kolmogorov-like energy spectrum. While our earlier work was in the limit of uniform stratification, we have demonstrated that ZVI works for non-uniform Brunt-V\"ais\"al\"a frequency profiles that may be found in protoplanetary disks.Comment: Submitted to Ap

    Finite size effects in adsorption of helium mixtures by alkali substrates

    Full text link
    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.Comment: 12 pages, and 12 figures (PNG format

    Quantum Key Distribution using Continuous-variable non-Gaussian States

    Full text link
    In this work we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the Photon Added then Subtracted Coherent States (PASCS) in which one photon is added and subsequently one photon is subtracted. We analyze the performance of our protocol, compared to a coherent state based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.Comment: We have included an analysis of the simultaneous quadrature measurement attack plus 2 figures; we have also clarified some point

    Quantum state engineering via unitary transformations

    Get PDF
    We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field. The proposition is based upon the fact that a unitary transformation for the generation of number states has been already found. The general unitary transformation here obtained, would allow the use of nonlinear interactions for the production of pure states. We discuss the applicability of this method by giving examples of generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the interaction of trapped ions with two laser fields.Comment: 5 pages in RevTeX, no figures, accepted for publication in Phys. Rev.

    Commutative CC^*-algebras of Toeplitz operators on complex projective spaces

    Full text link
    We prove the existence of commutative CC^*-algebras of Toeplitz operators on every weighted Bergman space over the complex projective space Pn(C)\mathbb{P}^n(\mathbb{C}). The symbols that define our algebras are those that depend only on the radial part of the homogeneous coordinates. The algebras presented have an associated pair of Lagrangian foliations with distinguished geometric properties and are closely related to the geometry of Pn(C)\mathbb{P}^n(\mathbb{C})
    corecore