136 research outputs found

    Mediterranean spotted fever-like illness caused by Rickettsia sibirica mongolitimonae, North Macedonia, June 2022

    Get PDF
    Mediterranean spotted fever-like illness (MSF-like illness) is a tick-borne disease caused by Rickettsia sibirica mongolitimonae first reported in France more than 25 years ago. Until today, more than 50 cases of MSF-like illness have been reported in different regions of Europe and Africa, highlighting variable clinical manifestation. Here we report a case of MSF-like illness following a bite from a Hyalomma tick in the Skopje region of North Macedonia

    CAD-based shape optimisation of the NASA CRM wing-body intersection using differentiated CAD-kernel

    Get PDF
    In industrial design existence of a master CAD geometry of a product enables simultaneous multi-disciplinary collaboration. Adjoint CFD methods have become increasingly accepted for aerodynamic shape optimisations due to their low computational cost. However, use of CAD-based parametrisations for aerodynamic gradient-based shape optimisation is not widely used, one reason being that current CAD systems to do not compute derivatives. In this work, we present the automatically differentiated (AD) version of Open Cascade Technology (OCCT) CAD kernel which can provide derivatives with respect to CAD parameters. OCCT is differentiated in block-vector AD mode which significantly reduces the cost for computing the derivatives. This work contains further OCCT extension for NURBS-based optimisation with intersecting patches and a description of the surface mesh movement linked to the change of the intersection line. These techniques are applied to the drag reduction of the NASA Common Research Model via the modification of the intersection between the root fairing and the wing

    An aggravated trajectory of depression and anxiety co-morbid with hepatitis C: : A 21 to 62 month follow-up study in 61 South Australian outpatients

    Get PDF
    BACKGROUND: This study aimed to explore the course of depression and anxiety in chronic hepatitis C patients. METHODS:   Data were combined from two studies: (1) Hospital Anxiety and Depression Scale (HADS) scores in 395 consecutive Australian outpatients from 2006 to 2010 formed the baseline measurement; and (2) Depression Anxiety Stress Scales (DASS) scores in a survey of a sub-sample of these patients in 2011 formed the follow-up measurement. After converting DASS to HADS scores, changes in symptom scores and rates of case-ness (≥8), and predictors of follow-up symptoms were assessed. RESULTS:   Follow-up data were available for 61 patients (70.5% male) whose age ranged from 24.5 to 74.6 years (M=45.6). The time to follow-up ranged from 20.7 to 61.9 months (M=43.8). Baseline rates of depression (32.8%) and anxiety (44.3%) increased to 62.3% and 67.2%, respectively. These findings were confirmed, independent of the conversion, by comparing baseline HADS and follow-up DASS scores with British community norms. Baseline anxiety and younger age predicted depression, while baseline anxiety, high school non-completion, and single relationship status predicted anxiety. CONCLUSION:  This study demonstrated a worsening trajectory of depression and anxiety. Further controlled and prospective research in a larger sample is required to confirm these findings

    High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model

    Get PDF
    To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.National Institutes of Health (U.S.) (grant R01 EB007042)National Institutes of Health (U.S.
    corecore