19 research outputs found

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    Regional variation in SE Fennoscandian mire vegetation

    No full text

    Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: Human or environmental influence?

    Get PDF
    To determine whether the cover and growth habit of the main forest forming species (Polylepis australis BITT.) in a mountain range with low human population density is mainly affected by anthropogenic activities or by environmental influences. Location: Central Argentina. Methods: Using GIS and field surveys we established 146 plots of 30 x 30 m located in five river basins differing in human impact. We measured P. australis cover, growth habit of each individual (number of basal ramifications), index of long term human impact (percentage of rock exposed by soil erosion due to livestock and fires), evidence of logging, fire scars, local relief, percentage of rock outcrops and altitude above sea level. We analysed the influence of independent variables on P. australis cover and growth habit (average number of basal ramifications per plot) using correlations and General Linear Models. Results: Polylepis australis cover was greater at intermediate altitudes above sea level and in areas with reduced long term human impact. Contrastingly local relief, percentage of rock outcrops and logging in the recent past did not have a major influence on P. australis abundance. Growth habit varied in complex patterns. Individuals with fewer ramifications were found in valley bottoms and more disturbed basins, while more ramifications were found at mid- and upper slopes and well preserved basins. In valley bottoms, ramifications decreased with increasing altitude whereas the opposite trend was observed for mid-slopes. Ramifications were positively related to fires in two river basins and in mid- and upper slopes but not in valley bottoms. Fire impact was always less in valley bottoms than at mid- and upper slopes. Main conclusions: Human impact had a major role on P. australis cover, while growth habit was determined by complex combinations of potentially cumulative natural and anthropogenic factors. Even in sparsely populated mountains, both human impact and their interaction with natural environmental gradients influence plant communities and need to be understood for effective management.Fil: Renison, Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; ArgentinaFil: Hensen, Isabell. Institute of Geobotany and Botanical Garden; AlemaniaFil: Suarez, Ricardo. Proyecto ConservaciĂłn y ReforestaciĂłn de las Sierras de CĂłrdoba; ArgentinaFil: Cingolani, Ana MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; Argentin
    corecore