3,089 research outputs found

    Magnetic Raman Scattering of Insulating Cuprates

    Full text link
    We study the B1gB_{1g} and A1gA_{1g} Raman profiles of M2_{2}CuO4O_{4} (with M= La, Pr, Nd, Sm, Gd), Bi2_{2}Sr2_{2}Ca0.5_{0.5}Y0.5_{0.5}Cu2_{2}O8+y_{8+y}%, YBa2_{2}Cu3_{3}O6.2_{6.2} and PrBa2_{2}Cu2.7_{2.7}Al0.3_{0.3}O7_{7} insulating cuprates within the Loudon-Fleury theory, in the framework of an extended Hubbard model for moderate on-site Coulomb interaction UU. We calculate the non-resonant contribution to these Raman profiles by using exact diagonalization techniques and analyze two types of contributing mechanisms to the line shapes: 4-spin cyclic exchange and spin-phonon interactions. Although these interactions contribute to different parts of the spectra, together, they account for the enhanced linewidth and asymmetry of the B1gB_{1g} mode, as well as the non-negligible intensity of the A1gA_{1g} Raman line observed in these materials.Comment: 8 pages, 2 eps figures. To be published in PR

    Study of RPC gas mixtures for the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment consists of a RPC carpet to be operated at the Yangbajing laboratory (Tibet, P.R. China), 4300 m a.s.l., and devoted to the detection of showers initiated by photon primaries in the energy range 100 GeV - 20 TeV. The measurement technique, namely the timing on the shower front with a few tens of particles, requires RPC operation with 1 ns time resolution, low strip multiplicity, high efficiency and low single counting rate. We have tested RPCs with many gas mixtures, at sea level, in order to optimize these parameters. The results of this study are reported.Comment: 6 pages, 3 figures. To be published in Nucl. Instr. Meth. A, talk given at the "5th International Workshop on RPCs and Related Detectors", Bari (Italy) 199

    Resonant two-magnon Raman scattering in parent compounds of high-Tc_c superconductors.

    Full text link
    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-Tc_c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin density wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ωi\omega_i both for ωiU\omega_i \ll U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its denominators (i.e., a triple resonance). We study this diagram in detail and show that the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles.Comment: Revtex, 12 postscript figures (uuencoded

    Raman Response in Doped Antiferromagnets

    Full text link
    The resonant part of the B1gB_{1g} electronic Raman scattering response is calculated within the tJt-J model on a planar lattice as a function of temperature and hole doping, using a finite-temperature diagonalization method for small systems. Results, directly applicable to experiments on cuprates, reveal on doping a very pronounced increase of the width of the two-magnon Raman peak, accompanied by a decrease of the total intensity. At the same time the peak position does not shift substantially in the underdoped regime.Comment: 11 pages revtex, 3 postscript figures. Minor corrections and changes from previous version, to be published in Phys. Rev.

    Testing QCD with Hypothetical Tau Leptons

    Get PDF
    We construct new tests of perturbative QCD by considering a hypothetical tau lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e^+ e^- annihilation cross section ratio, R_{e^+e^-}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical tau. This method allows the wide range of the R_{e^+e^-} data to be used as a probe of perturbative QCD.Comment: 4 pages, 4 figure

    High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Get PDF
    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE

    Numerical Calculations of the B1g Raman Spectrum of the Two-Dimensional Heisenberg Model

    Full text link
    The B1g Raman spectrum of the two-dimensional S=1/2 Heisenberg model is discussed within Loudon-Fleury theory at both zero and finite temperature. The exact T=0 spectrum for lattices with up to 6*6 sites is computed using Lanczos exact diagonalization. A quantum Monte Carlo (QMC) method is used to calculate the corresponding imaginary-time correlation function and its first two derivatives for lattices with up to 16*16 spins. The imaginary-time data is continued to real frequency using the maximum-entropy method, as well as a fit based on spinwave theory. The numerical results are compared with spinwave calculations for finite lattices. There is a surprisingly large change in the exact spectrum going from 4*4 to 6*6 sites. In the former case there is a single dominant two-magnon peak at frequency w/J appr. 3.0, whereas in the latter case there are two approximately equal-sized peaks at w/J appr. 2.7 and 3.9. This is in good qualitative agreement with the spinwave calculations including two-magnon processes on the same lattices. Both the Lanczos and the QMC results indicate that the actual infinite-size two-magnon profile is broader than the narrow peak obtained in spinwave theory, but the positions of the maxima agree to within a few percent. The higher-order contributions present in the numerical results are merged with the two-magnon profile and extend up to frequencies w/J appr. 7. The first three frequency cumulants of the spectrum are in excellent agreement with results previously obtained from a series expansion around the Ising limit. Typical experimental B1g$ spectra for La2CuO4 are only slightly broader than what we obtain here. The exchange constant extracted from the peak position is J appr. 1400K, in good agreement with values obtained from neutron scattering and NMR experiments.Comment: 15 pages, Revtex, 13 PostScript figure

    Screened-interaction expansion for the Hubbard model and determination of the quantum Monte Carlo Fermi surface

    Full text link
    We develop a systematic self-consistent perturbative expansion for the self energy of Hubbard-like models. The interaction lines in the Feynman diagrams are dynamically screened by the charge fluctuations in the system. Although the formal expansion is exact-assuming that the model under the study is perturbative-only if diagrams to all orders are included, it is shown that for large-on-site-Coulomb-repulsion-U systems weak-coupling expansions to a few orders may already converge. We show that the screened interaction for the large-U system can be vanishingly small at a certain intermediate electron filling; and it is found that our approximation for the imaginary part of the one-particle self energy agrees well with the QMC results in the low energy scales at this particular filling. But, the usefulness of the approximation is hindered by the fact that it has the incorrect filling dependence when the filling deviates from this value. We also calculate the exact QMC Fermi surfaces for the two-dimensional (2-D) Hubbard model for several fillings. Our results near half filling show extreme violation of the concepts of the band theory; in fact, instead of growing, Fermi surface vanishes when doped toward the half-filled Mott-Hubbard insulator. Sufficiently away from half filling, noninteracting-like Fermi surfaces are recovered. These results combined with the Luttinger theorem might show that diagrammatic expansions for the nearly-half-filled Hubbard model are unlikely to be possible; however, the nonperturbative part of the solution seems to be less important as the filling gradually moves away from one half. Results for the 2-D one-band Hubbard model for several hole dopings are presented. Implications of this study for the high-temperature superconductors are also discussed.Comment: 11 pages, 12 eps figures embedded, REVTeX, submitted to Phys. Rev. B; (v2) minor revisions, scheduled for publication on November 1

    First Observation of PP-odd γ\gamma Asymmetry in Polarized Neutron Capture on Hydrogen

    Full text link
    We report the first observation of the parity-violating 2.2 MeV gamma-ray asymmetry AγnpA^{np}_\gamma in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. AγnpA^{np}_\gamma isolates the ΔI=1\Delta I=1, \mbox{3S13P1^{3}S_{1}\rightarrow {^{3}P_{1}}} component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless EFT. We measured Aγnp=[3.0±1.4(stat)±0.2(sys)]×108A^{np}_\gamma = [-3.0 \pm 1.4 (stat) \pm 0.2 (sys)]\times 10^{-8}, which implies a DDH weak πNN\pi NN coupling of hπ1=[2.6±1.2(stat)±0.2(sys)]×107h_{\pi}^{1} = [2.6 \pm 1.2(stat) \pm 0.2(sys)] \times 10^{-7} and a pionless EFT constant of C3S13P1/C0=[7.4±3.5(stat)±0.5(sys)]×1011C^{^{3}S_{1}\rightarrow ^{3}P_{1}}/C_{0}=[-7.4 \pm 3.5 (stat) \pm 0.5 (sys)] \times 10^{-11} MeV1^{-1}. We describe the experiment, data analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure

    EUPRAXIA@SPARC_LAB: Beam Dynamics studies for the X-band Linac

    Full text link
    In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA@SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN. Two advanced acceleration schemes will be applied, namely an ultimate high gradient 1 GeV X-band linac together with a plasma acceleration stage to provide accelerating gradients of the GeV/m order. A FEL scheme is foreseen to produce X-ray beams within 3-10 nm range. A 500-TW Laser system is also foreseen for electron and ion production experiments and a Compton backscattering Interaction is planned together with extraction beamlines at intermediate electron beam energy for neutron beams and THz radiation production. The electron beam dynamics studies in the linac are here presented together with the preliminary machine layout.Comment: 5 pages, 3 figures, NIM-A proceedings of EAAC201
    corecore