We propose a theory of two-magnon Raman scattering from the insulating parent
compounds of high-Tc superconductors, which contains information not only on
magnetism, but also on the electronic properties in these materials. We use
spin density wave formalism for the Hubbard model, and study diagrammatically
the profile of the two-magnon scattering and its intensity dependence on the
incoming photon frequency ωi both for ωi≪U and in the
resonant regime, in which the energy of the incident photon is close to the gap
between conduction and valence bands. In the nonresonant case, we identify the
diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the
resonant regime, where most of the experiments have been done, we find that the
dominant contribution to Raman intensity comes from a different diagram, one
which allows for a simultaneous vanishing of all three of its denominators
(i.e., a triple resonance). We study this diagram in detail and show that the
triple resonance, combined with the spin-density-wave dispersion relation for
the carriers, explains the unusual features found in the two-magnon profile and
in the two-magnon peak intensity dependence on the incoming photon frequency.
In particular, our theory predicts a maximum of the two-magnon peak intensity
right at the upper edge of the features in the optical data, which has been one
of the key experimental puzzles.Comment: Revtex, 12 postscript figures (uuencoded