251 research outputs found

    Spectral soil analysis for fertilizer recommendations by coupling with QUEFTS for maize in East Africa: A sensitivity analysis

    Get PDF
    Laboratory analysis of soil properties is prohibitively expensive and difficult to scale across the soils in sub Saharan Africa. This results in a lack of soil-specific fertilizer recommendations, where recommendation can only be provided at a regional scale. This study aims to assess the feasibility of using spectral soil analysis to provide soil-specific fertilizer recommendations. Using a range of spectrometers [NeoSpectra Saucer (NIR), FieldSpec 4 (vis-NIR) with contact probe or mug light interface, FTIR Bruker Tensor 27 (MIR)], 346 archived soil samples (0–20 cm) with known soil chemical properties collected from Ethiopia, Kenya and Tanzania were scanned. Partial least square regression (PLSR) was used to develop prediction models for selected soil properties including pH, soil organic carbon (SOC), total nitrogen, Olsen P, and exchangeable K. These predicted properties, and associated uncertainty, were used to derive fertilizer recommendations for maize using the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model parameters for sub-Saharan Africa. Most soil properties (pH, SOC, total nitrogen, and exchangeable K) were well predicted (Concordance Correlation Coefficient values between 0.88 and 0.96 and Ratio of Performance to Interquartile values between 1.4 and 5.9) by all the spectrometers but there were performance variations between soil properties and spec- trometers. Use of the predicted soil data for the development of fertilizer recommendations gave promising results when compared to the recommendations obtained with the conventional soil analysis. For example, the least performing NeoSpectra Saucer over/under-estimated up to 8 and 24 kg ha-1N and P, respectively, though there was insignificant variation in estimation of P fertilizer among spectrometers. We conclude that spectral technology can be used to determine major soil properties with satisfactory precision, sufficient for specific fertilizer decision making in East Africa, possibly even with portable equipment in the fiel

    Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia

    Get PDF
    The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and hominin evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin (CHB). In this statistical project we used recurrence plots (RPs) together with a recurrence quantification analysis (RQA) to distinguish two types of variability and transitions in the Chew Bahir aridity record and compare them with the ODP Site 967 wetness index from the eastern Mediterranean. The first type of variability is one of slow variations with cycles of ∼20 kyr, reminiscent of the Earth's precession cycle, and subharmonics of this orbital cycle. In addition to these cyclical wet-dry fluctuations in the area, extreme events often occur, i.e. short wet or dry episodes, lasting for several centuries or even millennia, and rapid transitions between these wet and dry episodes. The second type of variability is characterized by relatively low variation on orbital time scales, but significant century-millennium-scale variations with progressively increasing frequencies. Within this type of variability there are extremely fast transitions between dry and wet within a few decades or years, in contrast to those within Type 1 with transitions over several hundreds of years. Type 1 variability probably reflects the influence of precessional forcing in the lower latitudes at times with maximum values of the long (400 kyr) eccentricity cycle of the Earth's orbit around the sun, with the tendency towards extreme events. Type 2 variability seems to be linked with minimum values of this cycle. There does not seem to be a systematic correlation between Type 1 or Type 2 variability with atmospheric CO2 concentration. The different types of variability and the transitions between those types had important effects on the availability of water, and could have transformed eastern Africa's environment considerably, which would have had important implications for the shaping of the habitat of H. sapiens and the direct ancestors of this species

    Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response

    Get PDF
    Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica.A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1.In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed

    Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia

    Get PDF
    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region.This research benefited from funding of the National Geographic Society (http:// nationalgeographic.org/), grants # 8110-06 and 8510-08 (ZA), of the Wenner-Gren Foundation (http://www.wennergren.org/), grant # ICRG e 102, (ZA and DP), of the Hebrew University of Jerusalem (http://new.huji.ac.il/en) (EH), of the French National Research Agency (http://www.agence-nationale-recherche.fr), projects # ANR-09- JCJC-0123-01 (CT), # ANR-14-CE31-0023-03, and # ANR-10-LABX-52, of the Regional Priority Program « Heritage, Resources, Governance » (HEREGO, coordinated by the Institut de Recherche pour le Developpement) (DP), the Doctoral School of the Museum National d’Histoire Naturelle in Paris (France) and UMR CNRS 7194 (AL), the Smithsonian NMNH small grants, and the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant (https://ec.europa.eu/programmes/ horizon2020/en/h2020-section/marie-sklodowskacurie-actions), agreement #655459. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia

    Get PDF
    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region.This research benefited from funding of the National Geographic Society (http:// nationalgeographic.org/), grants # 8110-06 and 8510-08 (ZA), of the Wenner-Gren Foundation (http://www.wennergren.org/), grant # ICRG e 102, (ZA and DP), of the Hebrew University of Jerusalem (http://new.huji.ac.il/en) (EH), of the French National Research Agency (http://www.agence-nationale-recherche.fr), projects # ANR-09- JCJC-0123-01 (CT), # ANR-14-CE31-0023-03, and # ANR-10-LABX-52, of the Regional Priority Program « Heritage, Resources, Governance » (HEREGO, coordinated by the Institut de Recherche pour le Developpement) (DP), the Doctoral School of the Museum National d’Histoire Naturelle in Paris (France) and UMR CNRS 7194 (AL), the Smithsonian NMNH small grants, and the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant (https://ec.europa.eu/programmes/ horizon2020/en/h2020-section/marie-sklodowskacurie-actions), agreement #655459. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Orbital controls on eastern African hydroclimate in the Pleistocene

    Get PDF
    Understanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation forcing and high-latitude-driven climate change, likely related to the relative strengths of these forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate variations likely played a more significant role than gradual change in the relationship between early humans and their environment

    Modern Sedimentation and Authigenic Mineral Formation in the Chew Bahir Basin, Southern Ethiopia:Implications for Interpretation of Late Quaternary Paleoclimate Records

    Get PDF
    We present new mineralogical and geochemical data from modern sediments in the Chew Bahir basin and catchment, Ethiopia. Our goal is to better understand the role of modern sedimentary processes in chemical proxy formation in the Chew Bahir paleolake, a newly investigated paleoclimatic archive, to provide environmental context for human evolution and dispersal. Modern sediment outside the currently dry playa lake floor have higher SiO2 and Al2O3 (50-70 wt.%) content compared to mudflat samples. On average, mudflat sediment samples are enriched in elements such as Mg, Ca, Ce, Nd, and Na, indicating possible enrichment during chemical weathering (e.g., clay formation). Thermodynamic modeling of evaporating water in upstream Lake Chamo is shown to produce an authigenic mineral assemblage of calcite, analcime, and Mg-enriched authigenic illitic clay minerals, consistent with the prevalence of environments of enhanced evaporative concentration in the Chew Bahir basin. A comparison with samples from the sediment cores of Chew Bahir based on whole-rock MgO/Al2O3, Ba/Sr and authigenic clay mineral delta O-18 values shows the following: modern sediments deposited in the saline mudflats of the Chew Bahir dried out lake bed resemble paleosediments deposited during dry periods, such as during times of the Last Glacial Maximum and Younger Dryas stadial. Sediments from modern detrital upstream sources are more similar to sediments deposited during wetter periods, such as the early Holocene African Humid Period

    Using multiple chronometers to establish a long, directly-dated lacustrine record:Constraining >600,000 years of environmental change at Chew Bahir, Ethiopia

    Get PDF
    Despite eastern Africa being a key location in the emergence of Homo sapiens and their subsequent dispersal out of Africa, there is a paucity of long, well-dated climate records in the region to contextualize this history. To address this issue, we dated a ∼293 m long composite sediment core from Chew Bahir, south Ethiopia, using three independent chronometers (radiocarbon, 40Ar/39Ar, and optically stimulated luminescence) combined with geochemical correlation to a known-age tephra. The site is located in a climatically sensitive region, and is close to Omo Kibish, the earliest documented Homo sapiens fossil site in eastern Africa, and to the proposed dispersal routes for H. sapiens out of Africa. The 30 ages generated by the various techniques are internally consistent, stratigraphically coherent, and span the full range of the core depth. A Bayesian age-depth model developed using these ages results in a chronology that forms one of the longest independently dated, high-resolution lacustrine sediment records from eastern Africa. The chronology illustrates that any record of environmental change preserved in the composite sediment core from Chew Bahir would span the entire timescale of modern human evolution and dispersal, encompassing the time period of the transition from Acheulean to Middle Stone Age (MSA), and subsequently to Later Stone Age (LSA) technology, making the core well-placed to address questions regarding environmental change and hominin evolutionary adaptation. The benefits to such studies of direct dating and the use of multiple independent chronometers are discussed. Highlights • Four independent dating methods applied to ∼293 m lake core from southern Ethiopia. • Reveals 620 ka high-resolution sedimentary record near key fossil hominin sites. • Mean accumulation rate of 0.47 mm/a comparable to other African lacustrine sediments. • Accumulation rate fell to 0.1 mm/a during MIS 2, likely due to reduced sediment supply. • Use of multiple independent chronometers is a powerful approach in lake settings

    Spatial distribution of podoconiosis in relation to environmental factors in Ethiopia: a historical review

    Get PDF
    BACKGROUND An up-to-date and reliable map of podoconiosis is needed to design geographically targeted and cost-effective intervention in Ethiopia. Identifying the ecological correlates of the distribution of podoconiosis is the first step for distribution and risk maps. The objective of this study was to investigate the spatial distribution and ecological correlates of podoconiosis using historical and contemporary survey data. METHODS Data on the observed prevalence of podoconiosis were abstracted from published and unpublished literature into a standardized database, according to strict inclusion and exclusion criteria. In total, 10 studies conducted between 1969 and 2012 were included, and data were available for 401,674 individuals older than 15 years of age from 229 locations. A range of high resolution environmental factors were investigated to determine their association with podoconiosis prevalence, using logistic regression. RESULTS The prevalence of podoconiosis in Ethiopia was estimated at 3.4% (95% CI 3.3%-3.4%) with marked regional variation. We identified significant associations between mean annual Land Surface Temperature (LST), mean annual precipitation, topography of the land and fine soil texture and high prevalence of podoconiosis. The derived maps indicate both widespread occurrence of podoconiosis and a marked variability in prevalence of podoconiosis, with prevalence typically highest at altitudes >1500 m above sea level (masl), with >1500 mm annual rainfall and mean annual LST of 19-21°C. No (or very little) podoconiosis occurred at altitudes 24°C. CONCLUSION Podoconiosis remains a public health problem in Ethiopia over considerable areas of the country, but exhibits marked geographical variation associated in part with key environmental factors. This is work in progress and the results presented here will be refined in future work
    • …
    corecore