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A B S T R A C T   

Laboratory analysis of soil properties is prohibitively expensive and difficult to scale across the soils in sub- 
Saharan Africa. This results in a lack of soil-specific fertilizer recommendations, where recommendation can 
only be provided at a regional scale. This study aims to assess the feasibility of using spectral soil analysis to 
provide soil-specific fertilizer recommendations. 

Using a range of spectrometers [NeoSpectra Saucer (NIR), FieldSpec 4 (vis-NIR) with contact probe or mug 
light interface, FTIR Bruker Tensor 27 (MIR)], 346 archived soil samples (0–20 cm) with known soil chemical 
properties collected from Ethiopia, Kenya and Tanzania were scanned. Partial least square regression (PLSR) was 
used to develop prediction models for selected soil properties including pH, soil organic carbon (SOC), total 
nitrogen, Olsen P, and exchangeable K. These predicted properties, and associated uncertainty, were used to 
derive fertilizer recommendations for maize using the Quantitative Evaluation of the Fertility of Tropical Soils 
(QUEFTS) model parameters for sub-Saharan Africa. 

Most soil properties (pH, SOC, total nitrogen, and exchangeable K) were well predicted (Concordance Cor-
relation Coefficient values between 0.88 and 0.96 and Ratio of Performance to Interquartile values between 1.4 
and 5.9) by all the spectrometers but there were performance variations between soil properties and spec-
trometers. Use of the predicted soil data for the development of fertilizer recommendations gave promising 
results when compared to the recommendations obtained with the conventional soil analysis. For example, the 
least performing NeoSpectra Saucer over/under-estimated up to 8 and 24 kg ha-1N and P, respectively, though 
there was insignificant variation in estimation of P fertilizer among spectrometers. We conclude that spectral 
technology can be used to determine major soil properties with satisfactory precision, sufficient for specific 
fertilizer decision making in East Africa, possibly even with portable equipment in the field.   

1. Introduction 

Intensified farming with increased productivity is necessary in many 
regions of the world to match the growing food and energy demand. 
Among many management factors, mineral fertilizer use is regarded as 
an essential component in agricultural intensification. Fertilizers play a 
key role in providing global food supplies and will continue to be needed 
even with climate change (Wortmann and Sones, 2017; Krasilnikov 
et al., 2022). To optimize their use, soil tests can help to identify whether 
it would be productive to grow a particular crop in an area, what 

fertilizer to apply and how much of it. However, an important constraint 
in the judicious use of fertilizers in Africa arises from inadequate, often 
slow and expensive soil testing facilities with limited capacities (Shep-
herd and Walsh, 2002). Historically, soil laboratories have been under- 
supported in many developing countries resulting in poor quality diag-
nosis, which quickly leads to inappropriate fertilizer recommendations, 
reduced productivity and higher costs. 

Furthermore, conventional soil analysis methods not sufficiently 
standardized between different laboratories hamper attempts to 
compare and synthesize soil measurements from different countries, 
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regions, times, and studies making it difficult to reliably extrapolate 
findings. A resulting practice is the use of blanket fertilizer recommen-
dations for whole regions, often causing the continuous use of imbal-
anced fertilizer rates and low nutrient use efficiency (Tittonell et al., 
2008; Ichami et al., 2019). This is not adequate because the soil envi-
ronment is dynamic, varying tremendously across space and time, and 
thereby affecting the resource use efficiency in many agricultural sys-
tems (Tittonell et al., 2008). The development of cost-effective soil 
analysis methods is becoming a priority in contemporary soil science 
(Grunwald et al., 2011), and this is particularly important when 
considering the creation of new, harmonized, target-scale spatial soil 
datasets. 

The trade-off between the growing need for large scale soil infor-
mation and its high cost could be resolved by a widespread use of diffuse 
reflectance soil spectroscopy (DRSS) in the visible-near infrared (vis- 
NIR) and the mid infrared (MIR) regions. The diffusely reflected/ 
absorbed spectral signatures have been proven to reliably predict 
important soil properties (Viscarra Rossel et al., 2016; Lausch et al., 
2013; Bah et al., 2016; Shepherd & Walsh, 2007). They were also 
applied in digital soil mapping (Paul et al., 2019; Morais et al., 2018; 
Hengl et al., 2021; Brodský et al., 2011), evaluated for crop productivity 
and performance estimation (Breure et al., 2021), and for fertilizer de-
cision making using a soil fertility categorical approach (Ng et al., 2020). 
Therefore, these tools could be useful to improve fertilizer decision 
making in low-income countries for higher agricultural productivity 
through informed decisions which can be continuously improved and 
updated. 

One of the advancements in soil spectroscopy is the development of 
diverse spectrometers which can be suitable for various applications 
with a range of costs, precision, and flexibility while in use. The soil 
scanning spectrometers employed in soil science are mostly operating in 
the vis-NIR (350–2500 nm), NIR (1350 – 2500 nm) or MIR 
(2500–16700 nm) spectrum with diverse equipment setups such as 
bench-top, portable or handheld spectrometers. These spectrometers 
further differ in their technical specifications which encompasses the 
type of light source and detector, measurement principles, energy in-
tensity and resolution (Mouazen et al., 2007; Dos Santos et al., 2013; 
Rodionov et al., 2016; Xu et al., 2016; Fajardo et al., 2017; Ng et al., 
2019). These differences may result in varied precision and consistency 
across soil properties, soil types and scanning conditions. The spec-
trometers also differ in weight, size, and sample preparation protocols 
(Tang et al., 2019) which may affect the speed of analysis, sample 
processing duration, cost of soil analysis and ability to perform mea-
surements in the field. Particularly, the MIR spectroscopy provides clear 
and distinct absorbance peaks, however, the technology is more com-
plex, demands better facilities and training and often liquid nitrogen to 
cool down the light source which may not be accessible easily in 
developing countries. It is also more costly compared with vis-NIR and 
NIR spectroscopy (Li et al., 2022; Reeves, 2010; Viscarra Rossel et al., 
2006). In contrast, vis-NIR and NIR spectroscopy are robust methods 
that do not require much soil preparation (Sharififar, 2019) and can be 
integrated into simpler scanning instrumentations for reduction in cost 
and field applicability. 

A number of studies have compared and evaluated various soil 
scanning instrumentations and spectral ranges for their precision, con-
sistency, cost and complexity in obtaining spectral recordings (Van 
Groenigen et al., 2003; Mouazen et al., 2005; Bellon-Maurel & 
McBratney, 2011; Ge et al., 2011; Xie et al., 2011; Soriano-Disla et al., 
2014; Piikki et al., 2016; Gates, 2018; Hutengs et al., 2018; Pätzold 
et al., 2020; Sharififar, 2019; Tang et al., 2019). However, most com-
parisons of soil scanning instrumentations were carried out on a small 
number of soil properties, particularly soil organic carbon (SOC) and 
clay content (Knadel et al., 2013); soil moisture content and some 
chemical properties of manures (Mouazen et al., 2005); and SOC and 
total carbon estimation (Sharififar, 2019). Further comparisons on the 
predictive accuracy and instrument-specific trade-offs are needed to 

understand relationships among the scanning outcomes and prediction 
performance for a specific soil property (Knadel et al., 2013; Cécillon 
et al., 2009; Breure et al., 2022; Clingensmith et al., 2019). 

Furthermore, the soil information generated should be interpreted in 
relation to its use, in our case fertilizer recommendations. Among other 
approaches to interpret the soil information, mechanistic or empirical 
soil-crop-fertilizer models such as the QUEFTS model (QUantitative 
Evaluation of the Fertility of Tropical Soils) and soil test-based (STB) 
fertilizer recommendation models have been used to determine the 
amount of nutrients to be applied (Janssen et al., 1990; Tittonell et al., 
2008; Sattari et al., 2014). 

But it remains unclear if cheaper spectrometers can provide suffi-
cient prediction accuracy to provide meaningful fertilizer recommen-
dations (Tang et al., 2019; Sharififar, 2019). Hence, this study aims to i) 
compare the performance of desktop and portable soil scanning infrared 
instruments with conventional reference soil analysis techniques and in 
predicting multiple soil properties and ii) to use these predictions to 
derive and evaluate fertilizer recommendations for maize grown in 
selected soils of East Africa. 

2. Materials and methods 

2.1. Soil sample sources 

The soil samples used in this study were archived at the Africa Soil 
Information Service (AfSIS) spectral laboratory of Rothamsted Research, 
UK. They have been collected from Ethiopia, Kenya and Tanzania during 
different research projects viz., the Geo-Nutrition project (BB/P023126/ 
1) in Ethiopia, the iCGRAF project (also BB/P023126/1) in Kenya and 
Tanzania, and a second Geo-Nutrition project funded by the Bill and 
Melinda Gates Foundation (INV-009129). A total of 346 topsoil (i.e., 
0–20 cm depth) samples were used for this study, representing a wide- 
ranging agroecology and many soil types. Geographically, there were 
15, 259 and 76 soil samples from Ethiopia, Kenya and Tanzania, 
respectively. Samples were air dried, crushed with a pestle and mortar 
and sieved to pass through a 2 mm stainless steel sieve. Then, sub- 
samples were further fine milled (<50 µm) and stored in glass vials 
with a screw cap for scanning. 

2.2. Soil spectral data collection with a brief description of spectrometers 

The soil samples were scanned using four different commercially 
available spectrometers (Fig. 1) whose characteristics are summarized in 
Table 1. Technical descriptions of each infrared spectrometers are 
briefly presented below including the labelling used in brackets for each 
spectrometer in the graphs and discussions afterwards.  

• FTIR Bruker Tensor 27 bench-top spectrometer (Tensor-II) (Fig. 1 a) was 
used to collect the spectral data in the MIR region (FTIR Bruker Tensor 
27; Bruker Optik GmbH, Ettlingen, Germany) using a nitrogen purged 
integrating sphere to cool the MCT (mercury cadmium telluride) mid- 
band detector. The high throughput screening accessory (HTS-XT), 
which scans 95 samples in one plate, was used with a spectral resolution 
of 4 cm− 1 and scan time of 32 s per sample. Absorbance data in the 
spectral range 2500–16,666 nm were obtained in two replicates.  

• The portable ASD Contact Probe (FS4-CP) (Fig. 1 b) together with the 
FieldSpec 4 (2019 Malvern Panalytical) spectrometer, is used to measure 
samples through contact which minimizes measurement errors associated 
with stray light. The light source for this spectrometer is a Halogen bulb/ 
1500 h with a colour temperature of 2900 k that requires 12–18 VDC and 
6.5 W. It had a 3 nm vis, 8 nm short-wave infrared (SWIR) spectral 
resolution with wavelength accuracy of 0.5 nm. Three repeated scans 
were taken in the same sample holder/Petri dish by moving the 12 mm 
diameter visNIR sensor each time.  

• The portable ASD Mug light (FS4-ML) (Fig. 1 c) together with the 
FieldSpec 4 (2019 Malvern Panalytical) spectrometer, is employed to 
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acquire reflectance and absorbance measurements of samples using the 
ASD sampling tray adapter. This scanning interface has the advantage of 
minimizing measurement errors related to stray light and specular re-
flected components. The light source for this scanning interface is a 
Tungsten Quartz Halogen b/1500hrs with a bulb colour temperature of 
2900 k. It had a 3 nm vis, 8 nm short-wave infrared (SWIR) spectral 
resolution with wavelength accuracy of 0.5 nm. Three replicate mea-
surements of each soil sample were acquired with independent subsamples 
placed on the ASD sampling tray adapter.  

• NeoSpectra Saucer (Neospec) spectrometer (Fig. 1 d) is a hand-held Near 
InfraRed (NIR) spectral sensor manufactured by Si-ware containing a 
single-chip Michelson interferometer with monolithic opto-electro- 
mechanical (OEM) structure (Si-ware, 2017). It has a wavelength res-
olution of 16 nm and a wavelength accuracy of ± 1.5 nm. The sample 
scanning was performed with the settings set to boxcar, 3 N zero padding 
and a 10 s integration resulting in 1024 data points per spectrum using 
linear interpolation. Three replicate measurements per sample were 
recorded by moving the scanning spot over the soil sample in a petri dish. 

2.3. Conventional soil analysis 

The dry combustion method was used to determine total carbon 
(Nelson and Sommers, 1996) and total nitrogen (Bremner, 1996) with a 
Leco dry combustion analyzer (Stockport, UK). Inorganic carbon was 
analyzed using wet acidification with a Skalar Primacs AIC 100 (Skalar 
Analytical BV, Breda, Netherlands). Soil total organic carbon (SOC) was 
then calculated by subtracting inorganic carbon from total soil carbon. 
The Cobalthexamine extract (ISO 23470) of exchangeable K was 
analyzed with inductively coupled plasma optical emission spectrom-
etry (ICP-OES) (Ciesielski and Sterckeman, 1997). Soil pH was measured 
in a 1:2.5 soil: water suspension (ISO 10390: 2005) one hour after 
mixing, using a thin semi-micro sealed combined pH electrode from 
Fisher scientific (Loughborough, UK). Olsen P was measured in the so-
dium bicarbonate extract (Olsen, 1954) using the phospho-molybdenum 
blue method on a continuous colorimetric flow analyzer. 

2.4. Soil property prediction from spectra 

2.4.1. Spectral pre-processing 
The MIR scans of the Tensor II were converted to wavelengths (nm). 

The reflectance (R) measurements recoded by all spectrometers were 
transformed to the logarithmic apparent absorbance using A =

log(1/R). Splice correction (de-stepping) on FS4-ML and FS4-CP at 1000 
and 1800 nm was performed using the “spliceCorrection” function in the 
“prospectr” package (Stevens and Lopez, 2014) in R (R Core Team, 
2017). The spectral records of FS4-ML and FS4-CP outside the 
500–2450 nm range and of Neospec beyond 2450 nm were removed 
because of the low signal-to-noise ratio often caused by light scattering 
effects of quartz sand or by instrument drift. This was followed by per-
forming a combination of spectral pre-processing techniques that 
improved absorption features by reducing the noise (the Savitzky-Golay 
Smoothing with spectral first derivative) (Vestergaard et al., 2021). The 
smoothing gap sizes were a window of 11 nm for vis-NIR and MIR and a 
window of 5 nm for NIR. Thereafter, the spectral data was cleaned from 
water absorption regions (H2O band 1 between 1350 and 1460 nm; H2O 
band 2 between 1790 and 1960 nm) in the vis-NIR, and CO2 peaks in the 
MIR absorption regions (between 4274 and 4464 nm). 

2.4.2. Principal component analysis and 
A principal component (PC) analysis was performed to generate the 

PC scores of the respective infrared regions recorded from each spec-
trometer that explained 99 % of the variation using the “resemble” R 
package (Ramirez-lopez et al., 2022). 

2.4.3. sub-dividing samples into train and test sets 
The dataset was split into a calibration (training) set (75 %) and 

independent test set (25 %) using the conditioned Latin Hypercube 
sampling in the spectra PC score space. Thus, after removing the outliers 
(Supplementary Material Fig. 1), 260 and 86 samples were used, 
respectively. Supplementary Fig. 2 shows the spread of the training and 
the independent test sets in the score plot of the first two PCs for each 
spectrometer. 

2.4.4. Model calibration and performance evaluation 
Partial least squares regression (PLSR) was used to develop predic-

tive models of each soil property from the calibration spectra using the 
“pls” package (Wehrens, 2007). The number of components to retain 
were chosen based on the minimum root-mean squared error estimated 
from a tenfold cross validation. Models for each spectrometer were then 
evaluated on the independent test set. The performance of predictive 

Fig. 1. Spectrometers compared in this study: a) FTIR Bruker Tensor 27 (Tensor-II), b) FieldSpec 4 mug light (FS4-ML) and contact probe (FS4-CP); and c) Neo-
Spectra Saucer (Neospec). 

Table 1 
Characteristics of the spectrometers compared [FTIR Bruker Tensor 27 (Tensor-II), FieldSpec 4 mug light (FS4-ML) and contact probe (FS4-CP), and NeoSpectra Saucer 
(Neospec)].  

Spectrometers Spectral region (nm) Spot size (mm) Unit price (£) * Weight (kg) Power source Spectra data points 

Tensor-II MIR/NIR 1340–16669 6  71,163.00  >30.0 DC 2376 
FS4-CP Vis-NIR 350–2500 10  75,140.00  6.1 AC 2151 
FS4-ML Vis-NIR 350–2500 12  72,950.00  6.7 AC 2151 
Neospec NIR 1339–2500 10  3,850.00  1.0 AC 1023 

*Prices were collected in July 2021. 
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models was evaluated using concordance correlation coefficients (CCC), 
the Ratio of Performance to Inter Quartile distance (RPIQ), the Root 
Mean Square Error (RMSE) and the Bias, quantified using the indepen-
dent test set. CCC measures both the accuracy and precision (Lin, 1989) 
with a range of values between − 1 and + 1, where a value of + 1 de-
notes a perfect agreement. 

2.5. Derivation of soil test-based fertilizer estimation 

2.5.1. Estimation of indigenous soil nutrient supply (NPK) 
Based on the Quantitative Evaluation of the Fertility of Tropical Soils 

(QUEFTS) model, the indigenous soil supply of N, P and K were derived 
from the empirical relationship of values of SOC, Olsen P and 
exchangeable K with pH and SOC according to Eqs. [1–3], respectively 
(Janssen et al., 1990; Tittonell et al., 2008; Sattari et al., 2014). 

SNj = fNj × 6.8 × SOCj (1)  

SPj = fPj × 0.35 × SOCj+ 0.5 × Olsen Pj (2)  

SKj =
fKj × 500 × Exchangeable Kj

2 + (0.9 × SOCj)
(3) 

where SN, SP and SK are the indigenous soil supply of N, P and K, 
respectively, from soil mineralization and expressed in kg ha− 1; SOC is 
organic carbon content of the soil expressed in g kg− 1 of soil; P and K are 
expressed in mg kg− 1 and cmol kg− 1 soil, respectively; and j is the soil 
testing (conventional as well as spectral soil analysis) methods. Soil pH 
correction factors were used according to Eqs. [4–6] because pH 
considerably influences N mineralization, P dissolution and K 
exchangeability from soils (Sattari et al., 2014). 

fNj = f(x) =

⎧
⎨

⎩

0.4, pHj < 4.7
0.25 ×

(
pHj − 3

)
, 4.7 < pHj < 7

1, pHj > 7
(4)  

fPj = f(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.02, pHj < 4.7
1 − 0.5 ×

(
pHj − 6

)2
, 4.7 < pHj < 6

1, 6 < pHj < 6.7
1 − 0.25 ×

(
pHj − 6.7

)2
, 6.7 < pHj < 8

0.57, pHj > 8

(5)  

fKj = f(x) =

⎧
⎨

⎩
6.1 ×

1, pHj < 4.5
(

pHj
)− 1.2

, 4.5 < pHj < 6.8
0.6, pHj > 6.8

(6) 

where fN, fP, and fK are pH-H2O correction factors for N, P and K, 
respectively, and j is the soil testing method. 

2.5.2. Estimation of nutrient requirement for maize 
We estimated fertilizer recommendations based on Rurinda et al. 

(2020), [Eq. (7)] for the Sub-Saharan region in this study. In addition, 
some key assumptions were considered for estimating the nutrient re-
quirements of maize. These include, firstly, the maize target yield is 7 t 
ha− 1, which is a median of the yield range from 6 − 13 t ha− 1 retrieved 
from the Global Yield Gap Atlas protocol (i.e., www. yieldgap.org) for 
the East Africa region, assuming that the attainable yield is 70 % of the 
water limited yield potential. Secondly, we assumed that the optimum 
requirement of each nutrient in kg per tonne of maize grain is between 
the inverse of the maximum accumulation and dilution of the crop 
specific internal efficiencies (Smaling and Janssen, 1993). Hence, we 
took the average of the inverse internal efficiencies reported by Rurinda 
et al. (2020) for East Africa for each nutrient (for N ~ 16.74; for P ~ 
3.02; and for K ~ 15.44). Thirdly, the fertilizer recovery efficiency used 
in this study for N and K was 50 % as reported by Sattari et al. (2014), 
and 30 % for P as reported by Rurinda et al. (2020). Thus, the NPK re-
quirements are calculated according to: 

NCij =
(NRi x Yat) − (Sij )

REi
(7) 

where NC is the crop nutrient input requirement in kg ha− 1; NR is the 
N, P or K kg requirement per tonne of maize grain; Yat is the attainable 
maize grain yield target in t ha− 1; S is the indigenous nutrient supply of 
N, P or K derived from equation 2–4; and RE is the recovery efficiency 
for applied nutrients (%, ratio of crop nutrient uptake to nutrients 
applied); i is N, P or K; j is the soil testing method. 

2.6. Bootstrapping and error propagation 

Our calibration set was selected with a model-based sampling 
strategy and is, thus, controlled by design (Wehrens et al., 2002). Hence, 
we used the non-parametric bootstrapping (10,000 iterations) by re-
siduals method to estimate the uncertainty of PLS predictions (Zhang, 
2014) by deriving the leverage and residuals of the calibration set which 
is outlined in the Supplementary Material [Eqs. 1–2]. Then, the confi-
dence intervals were estimated by the bias-corrected method. Firstly, the 
bias was estimated as the proportion of individual bootstrap estimates 
that exceed the overall bootstrap mean (pb). The proportional bias was 
then converted to standard normal deviates using the inverse (quantile) 
normal distribution function (b = Φ− 1(pb)). Twice that bias was then 
subtracted from the standard normal 95 % confidence interval limits (z) 
which were converted to proportions by use of the normal (probability) 
distribution function. The percentiles were thus given by [Eqs. 10–11]: 

α1 = Φ
(

b+
b + z(α/2)

1 − b + z(α/2)

)

(10)  

α2 = Φ
(

b+
b + z(1− α/2)

1 − b + z(1− α/2)

)

(11) 

where, z(α/2) was the 100 ×
( α

2

)th percentile point of the normal 
(probability) distribution function (e.g., z(05/2) = − 1.96). The standard 
deviation of each individual prediction was then computed as the dif-
ference between the confidence limits divided by twice the 95 % normal 
deviate: σ =

CIu − CIl
2z , where: 2z = 3.92. 

The standard deviations associated with predictions for the valida-
tion set were used to propagate marginal prediction errors in the esti-
mation of indigenous soil N and K supply (Supplementary Material [Eqs. 
3–5]). Finally, uncertainty in the indigenous soil N and K supply was 
propagated into the nutrient requirement for a given yield target (Eq. 
(7)) from the soil nutrient supply of N and K as follows: 

σNij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
σ2

Sij

S2
ij

)√
√
√
√ NCij (12) 

Given that Olsen P was log-transformed for the PLS regression, we 
propagated the 100(1-α/2)% confidence interval (CI) limits through in 
the equations for the soil P supply (Eq. (2)), correction factor (Eq. (5)), 
and P requirement (Eq. 7) for CIl, the mean over all the bootstrap esti-
mates and CIu of pH, SOC and Olsen P. Thus, the uncertainty in SOC 
predictions was disregarded for error propagation in the P requirement. 

3. Results 

3.1. Description of the soil properties 

Table 2 presents descriptive statistics of the soil properties obtained 
by conventional analysis separately for the calibration and independent 
test sets. Soil pH ranged from 4.37 to 8.89 well representing the diverse 
pH values in agricultural soils of the region. The average, as measured by 
the mean (for most properties) or median (for the skewed Olsen P), of 
the soil attributes for all properties, were comparable in the calibration 
and independent test sets. Olsen P data was highly skewed, and a log 
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transformation was carried out before calibrating the predictive models 
from the spectra based on an investigation of the PLSR residuals for 
model calibration and back-transformed for the prediction exercise. 
Supplementary Table 1 further separates these statistics by country. 

3.2. Soil property prediction accuracy and consistency for QUESFTS 
inputs 

The prediction performance with the associated prediction error for 
the independent test set of all spectrometers is depicted in Fig. 2. As 
shown in this figure, all soil properties except Olsen P were adequately 
predicted from spectra obtained from all spectrometers, as indicated by 
CCC values ranging from 0.77 to 0.96 and RPIQ values between 1.7 and 
4.7. In particular, soil pH was predicted with higher precision and 
consistency, when compared to other soil properties considered, by the 
vis-NIR, NIR and the MIR spectrometers. Furthermore, SOC, exchange-
able K and total N were slightly better predicted by the vis-NIR and MIR 
spectrometer than the NIR spectrometer. Predictions from NIR spec-
trometer resulted in the lowest RPIQ values for SOC, exchangeable K and 

total N (2.1, 1.7 and 2.2, respectively) though the values are still in the 
range of model stability and reproducibility. The CCC and RPIQ values 
for vis-NIR and MIR spectrometers are in the category of good model 
performance and consistency whereas the respective values for NIR 
would be categorized as moderate according to Viscarra Rossel et al. 
(2016). This could have arisen from the missing absorbance ranges be-
tween 500 and 1350 which are clearly informative as demonstrated in 
the loadings plots shown in Supplementary Material Fig. 3 - Fig. 7. 
Across all four spectrometers, the spectra generated from the MIR 
spectrometer excelled in predicting SOC and total N, showing higher 
precision and consistency than any of the other spectrometers. 

Across soil properties, Olsen P had the poorest agreement with larger 
errors than all other soil properties. This indicated that Olsen P pre-
diction using the spectroscopic analysis was more uncertain than for the 
other soil properties considered. As can be seen from the scatter plot 
(Fig. 2), the deviation between the predicted and measured Olsen P 
increased above 15 mg P kg− 1 irrespective of the spectrometer. Overall, 
there was a tendency to underestimate higher values of Olsen P (>15 mg 
P kg− 1) and exchangeable K (>25 cmol kg− 1 soil) by all soil 

Table 2 
Descriptive statistics of soil chemical properties for model training and independent test set.  

Soil property Sample set N min q1 median mean q3 max 

pH Cal 260  4.48  5.09  5.50  5.99  6.42  8.89  
val 86  4.37  5.06  5.48  5.96  6.37  8.76 

SOC Cal 260  0.50  1.12  1.42  1.42  1.67  2.45  
val 86  0.57  1.15  1.40  1.43  1.70  2.51 

TotalN Cal 260  0.04  0.09  0.11  0.11  0.13  0.20  
val 86  0.04  0.09  0.11  0.11  0.13  0.20 

Exch.K Cal 260  1.02  2.28  3.81  6.69  7.81  45.83  
val 86  0.57  2.62  3.55  6.35  8.54  36.87 

OlsenP Cal 260  0.42  3.53  6.41  10.17  11.30  89.96  
val 86  0.94  3.98  6.40  8.99  10.87  35.62  

Fig. 2. Prediction accuracy and consistency for all soil properties (exchangeable K, total N, Olsen P, pH, and SOC, respectively) and spectrometers (FS4-CP ->
FieldSpec 4 contact probe, FS4-ML -> FieldSpec 4 mug light, Neospec -> NeoSpectra Saucer, Tensor-II -> FTIR Bruker Tensor 27). The statistics shown are the root 
mean square error (RMSE), the concordance correlation coefficient (CCC), Bias and the ratio of performance to interquartile range (RPIQ). The horizontal lines are 
the error bars which represented 95 % confidence intervals. 
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spectrometers. 

3.3. Comparison of soil testing methods for fertilizer decision making 

There was no potassium fertilizer recommended for a 7 t ha− 1 maize 
grain yield target because all studied soil samples had sufficient plant 
available K supply (Table 2). Hence, we only included nitrogen and 
phosphorus recommendation results. 

3.3.1. Nitrogen fertilizer recommendation 
Fig. 3 shows the scatter plot of the estimated nitrogen requirements 

using the spectra from the spectrometers versus the conventional soil 
analysis methods for a 7 t ha− 1 yield target with a 95 % confidence in-
terval (CI). The MIR spectrometer had the lowest RMSE (1.8 kg ha− 1) for 
recommended nitrogen fertilizer rates while the RMSE were 2.8, 2.8 and 
3.8 kg ha− 1 for the vis-NIR contact probe sample interface, the mug light 
sample interface and the NIR, respectively. However, the vis-NIR FS4 

Fig. 3. Nitrogen fertilizer rate predictions for a 7 t ha− 1 target maize yield based on spectral (x-axis) and conventional (y axis) soil analysis. The statistics shown are the root 
mean square error (RMSE) and Bias for each spectrometer (FS4-CP -> FieldSpec 4 contact probe, FS4-ML -> FieldSpec 4 mug light, Neospec -> NeoSpectra Saucer, Tensor-II 
-> FTIR Bruker Tensor 27). The horizontal lines are the marginal uncertainties represented as ± 1σ. 

Fig. 4. Fertilizer N difference among the conventional and spectrometers (FS4-CP -> FieldSpec 4 contact probe, FS4-ML -> FieldSpec 4 mug light, Neospec ->
NeoSpectra Saucer, Tensor-II -> FTIR Bruker Tensor 27). The dashed horizontal lines are the mean difference ±z(α/2)σ and the horizontal line is the mean difference. 
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contact probe and MIR spectrometer resulted in a higher bias than the 
other two spectrometers. The recommended nitrogen fertilizer rates 
from all spectrometers were comparably close to each other and fell 
close to the 1:1 line with the fertilizer rate determined based on con-
ventional soil analysis. 

There was a tendency for wider confidence intervals at higher rates 
of estimated nitrogen fertilizer from predictions based on the contact 
probe spectrometer and in particular for the Tensor II (Fig. 3; Fig. 4) 
while the confidence intervals are consistent for the other two spec-
trometers. Between spectrometers, the confidence intervals and the 
distance between the lower and upper bounds of the 95 % fertilizer N 
estimation difference between the spectrometers and conventional 
method were narrower with MIR followed by vis-NIR and then NIR, 
confirming a better performance of the former than the rest of the 
spectrometers (Fig. 4). The NIR predictions resulted in the widest con-
fidence interval and 95 % fertilizer N estimation difference (-7.61 to 
7.29 kg N ha− 1), however the difference was not prominent. Meanwhile 
the 95 % fertilizer N estimation differences lied in a range of − 3.86 to 
3.07, 5.43 to 5.59, and − 5.84 to 5.17 kg ha− 1 for Tensor-II MIR, vis-NIR 
FS4-CP and vis-NIR FS4-ML, respectively. This confirmed again that the 
MIR spectrometer was best for nitrogen rate decisions. And the NIR and 
vis-NIR spectrometer-based recommendations performed slightly worse. 

3.3.2. Phosphorus fertilizer recommendation 
Fig. 5 shows the estimated phosphorus fertilizer rate (kg P ha− 1) 

required for a 7 t ha− 1 yield target with the associated confidence in-
terval estimated based on the error propagation from the prediction of 
Olsen P. Higher rates of P recommendation (>50 kg P ha− 1) were esti-
mated better as there was a substantial agreement between the recom-
mendation based on conventional Olsen P across the spectrometers. 
However, the disagreement substantially increased for recommended P 
rates below 50 kg P ha− 1, indicated by a considerable scatter of points 
away from the 1:1 line. This trend agreed well with the prediction 
pattern in Fig. 2 which had good predictions at low Olsen P values (and 
therefore high P fertilizer rates) but had longer error bars with deviation 
from the 1:1 line at higher Olsen P values (and therefore low P fertilizer 
rates). However, the overall RMSE of P recommendation was ranging 
from 10 to 12 kg ha− 1 with very high negative bias (from − 3.0 to − 0.91) 

of estimation across the spectrometers, that could question the credi-
bility of P fertilizer rate estimations using soil spectroscopic techniques. 
Besides, there were larger confidence intervals, irrespective of the 
spectrometers, at higher rates of phosphorus recommendations, indi-
cating higher uncertainties and inefficiencies across the infrared spec-
trometers. When compared among spectrometers, the distance between 
the lower and upper bounds of the 95 % fertilizer P estimation difference 
between the spectrometers and conventional method appeared insig-
nificant among the spectrometers. Besides, there was a trend of positive 
relationships among which may be attributed to the tendency to over- 
estimate higher values of OlsenP by the spectrometers (Fig. 6). The 
95 % P fertilizer estimation difference were –23.56 to 17.92, − 21.23 to 
18.98, − 25.43 to 19.47 and − 21.47 to − 19.66 kg P ha− 1 for vis-NIR FS4- 
CP, vis-NIR FS4-ML, NIR Neospec and MIR Tensor-II, respectively. 

4. Discussion 

4.1. Prediction of soil property inputs for QUEFTS 

One of the sources of prediction imprecisions of soil properties by all 
spectrometers can be associated with the representativeness of the 
values in the training set for the specific soil properties (Brodský et al., 
2013; Viscarra Rossel et al., 2016; Ng et al., 2020). This is due to the 
skewed distribution of the conventional analysis of some of the soil 
properties whereby the attribute ranges were not always well repre-
sented in training set with an adequate sample number. This can be 
observed in the scatter plot of Supplementary Fig.1 whereby samples 
were not evenly distributed across the PC score space. Hence, this might 
have created a smaller number of occasions for the model to train for 
those samples which are found in less dense space in the scatter plot. 
This result agrees with Viscarra Rossel et al. (2016) who reported pre-
diction inconsistency due to the poor soil attribute value representation 
in the training set. In addition, Guerrero et al. (2016) reported that the 
inaccuracy of predictive models can be caused by the inadequacy of the 
soil libraries and a shortage of sufficient representative soil data. 
Brodský et al. (2013) reported a high deviation of measured versus 
predicted SOC at smaller values due to less representation in the training 
set. Hence, a representative calibration set is a vital component in soil 

Fig. 5. Phosphorus fertilizer rate recommendation for a 7 t ha− 1 maize target yield based on spectral (x-axis) and conventional (y axis) soil analysis. The statistics 
shown are the root mean square error (RMSE) and Bias for each spectrometer (FS4-CP -> FieldSpec 4 contact probe, FS4-ML -> FieldSpec 4 mug light, Neospec ->
NeoSpectra Saucer, Tensor-II -> FTIR Bruker Tensor 27). The horizontal lines are the 95 % confidence intervals. 
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spectroscopy, and some of the prediction discrepancy might be solved 
with an optimized sampling strategy for the training set. Ng et al. (2020) 
also mentioned that large variations within the measured values without 
enough representation might yield an unstable model, which affects the 
soil nutrients predictions. 

In general, the model prediction parameters for most of the QUEFTS 
inputs did not vary much between the spectrometers, though the pre-
diction performance varied among soil properties whereby the predic-
tion performance of Olsen P was the poorest of all. Several studies 
concluded that infrared spectroscopy is not satisfactory to predict plant 
available P when testing the predictive models with an independent test 
set (e.g., Pätzold et al., 2020). And the prediction performances in all the 
visible and infrared regions for the soil properties considered were 
comparable or better than reported by other researchers (Gates, 2018; 
Ng et al., 2020; Rodríguez-Pérez et al., 2021; Vestergaard et al., 2021; 
Wijewardane et al., 2018). However, there were differences between the 
spectrometers and the prediction accuracies for most of the soil prop-
erties were best in the MIR and vis-NIR range as compared to the NIR, 
especially for Olsen P and SOC as a result of the missing wavelength 
range (Bellon-Maurel and McBratney, 2011). Our result is in consent 
with the findings of Zelikman and Carmina (2013) who reported lower 
performance of the NIR range to predict SOC Barra et al. (2021) iden-
tified in their review paper that most comparisons favoured the MIR 
spectroscopy over the vis-NIR or NIR spectroscopy with regards to 
prediction accuracy and consistency although some studies also found 
better performance of NIR for some soil properties. However, Li et al. 
(2022) advised that NIR is the most cost effective method for SOC 
analysis, compared with MIR spectroscopy and dry combustion, and 
assuming > 250 samples per day had to be analyzed. They recom-
mended that vis-NIR spectroscopy was cheaper, accurate and had a large 
capacity for quick measurements. 

Besides these factors, the complexity of acquiring the spectra could 
be added to the evaluation of different spectrometers, especially for the 
application in developing countries. Portable NIR spectrometers could 

allow field-based application whereas bench-top MIR spectrometers 
require proper laboratories and liquid nitrogen to cool the light source. 
MIR spectrometers also need fine milled samples whereas NIR and Vis- 
NIR spectrometers give good results with sieved soil or even in-field 
scanning (this study and Breure et al., 2021). And finally, the initial 
equipment cost is another argument, clearly favouring the low cost NIR 
equipment used in our study. Therefore, our findings suggested that the 
small NIR spectral range covered by the NeoSpec had little negative 
effects on the prediction accuracy for the QUEFTS inputs even though 
the overall prediction performance was in the order of MIR > vis-NIR >
NIR spectrometers. Hence, NIR seems to have a comparative advantage 
in generating relevant soil information regarding prediction precision, 
cost effectiveness and ease of application. 

4.2. Fertilizer determination through soil spectral tools by coupling with 
QUEFTS 

Knowledge of relevant soil characteristics is a vital component to 
advise precise nutrient management adjusted to local conditions and 
different crop types. Consequently, soil testing has been widely accepted 
and used as a tool for rational fertilizer use, helping to achieve optimal 
yields with high nutrient use efficiency and minimized losses to the 
environment. Moreover, soil-test and crop response based empirical 
models such as the QUEFTS model (Janssen et al., 1990; Haefele and 
Wopereis, 2005; Sattari et al., 2014; Yang et al., 2017) or yield response 
functions (Dhakal and Lange, 2021) have been developed for many 
cropping systems, using general soil characteristics, nutrient availability 
tests and/or observed crop responses to applied nutrients as input pa-
rameters. These approaches progressed overtime to assess the soil 
fertility status and recommend suitable and economic nutrient rates 
through inorganic fertilizer and organic manure for different crops and 
cropping systems. 

However, there are considerable challenges in many countries in 
getting soil test results in time and at the required scale with 

Fig. 6. Fertilizer P difference among the conventional and spectrometers (FS4-CP -> FieldSpec 4 contact probe, FS4-ML -> FieldSpec 4 mug light, Neospec ->
NeoSpectra Saucer, Tensor-II -> FTIR Bruker Tensor 27). The dashed horizontal lines are the mean difference ±z(α/2)σ. The horizontal line is the mean difference. 
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conventional soil testing methods. Hence, applicability of easy soil 
testing methods and harmonized approaches of fertilizer recommenda-
tions could enable instant site-specific fertilizer management, enhancing 
overall productivity and improved nutrient use efficiency. Employing 
soil spectroscopic techniques with empirical fertilizer determination 
could be a breakthrough to alleviate the existing low productivity and 
nutrient use efficiency through informed decision in developing coun-
tries where technologies and information are scarce. Though some re-
searchers argued the non-existence of a standard functional form to 
evaluate optimal fertilizer recommendation (Dhakal and Lange, 2021), 
we considered that the QUEFTS model could be a candidate platform to 
harmonize efforts towards fertilizer recommendations with low costs, 
especially when coupled with efficient soil testing. The QUEFTS model is 
a versatile soil-crop-fertilizer model that demands very few inputs (four 
soil properties and calibrated soil-crop-fertilizer parameters) to derive 
site specific nutrient rates for optimized nutrient use of various crops 
(maize, wheat, rice, oil palm, manioc, and cotton) and for both tropic 
and subtropic environments. 

In this research, the resulting recommendation for NP fertilizer for 
the attainable yield (70 % of water limited potential yield) using soil 
spectroscopic techniques coupled with the QUEFTS model agreed well 
with the nutrient rates reported by Kenea et al. (2021) and ten Berge 
et al. (2019) for maize in the soil sample regions. Our findings revealed 
that the error propagated from the spectral training models was not 
further exacerbated by the QUEFTS model and parameters although the 
relative marginal uncertainties for the recommendations increased. This 
signified the feasibility of predicted soil inputs to be used in the QUEFTS 
approach. Our results indicated that spectroscopic methods predicted 
the QUEFTS-relevant soil properties with reasonable accuracy, con-
firming that a site-specific fertilizer recommendation could be derived 
efficiently and much faster if compared to the conventional method. Ng 
et al. (2022) had also proposed a categorical nutrient recommendation 
based on the vis-NIR or NIR as well as MIR region of the electromagnetic 
spectrum to alleviate the challenges of cost, complexity, and accessi-
bility of soil testing in developing countries. 

When we compared the spectrometers for their efficiency, longer 
confidence interval bars, revealing higher uncertainties associated with 
the recommendation, were observed for total N predictions when using 
NIR and vis-NIR ranges rather than MIR spectra, though most points fall 
on or close to the 1:1 line when compared with the conventional ni-
trogen fertilizer determination. Besides, the fertilizer N difference was in 
a range of acceptable estimation which ranged between − 8 to 8 kg N 
ha− 1 for the NIR which was the least performing spectrometer. In 
contrast, longer confidence intervals, which were comparably similar 
for all soil spectrometers, were observed for P fertilizer recommenda-
tions and the points tended to be underestimated for P rates below 50 kg 
ha− 1 with wider estimation differences with the conventional method. 
The MIR spectrometer was, in general, more efficient and effective 
spectrometer when compared to the vis-NIR and NIR spectrometers for 
use in fertilizer recommendation. However, its current complexity and 
cost to use for such purposes for developing countries could be 
impractical and the vis-NIR spectrometers, though portable, are still 
costly with a minimum or no variation in prediction performance when 
compared to the NIR spectrometer. In contrary, the NIR spectrometer is 
cheaper, portable and has very low running cost which can be used in 
the field and in low-income countries. This result ascertained that the 
cheaper, flexible to use and handheld NIR can contribute a lot in access 
to soil information for informed decision to improve productivity while 
decreasing fertilizer cost which ultimately improve livelihood of the 
farmers. 

To summarize, the spectroscopic methods followed were efficient 
and effective for N fertilizer recommendations, and we could not eval-
uate their use for K fertilizer estimation because all soils analyzed had a 
high K supply (but the prediction of exchangeable K was promising). The 
estimation of phosphorus fertilizer rates with soil spectroscopic tech-
niques was unsatisfactory in precision, often overestimating the P 

fertilizer rate on soils with a good P supply. Its application for this 
purpose needs further investigation and consideration of larger and 
better-balanced calibration sets and/or improving the predictive model 
approach. 

5. Conclusions 

The study evaluated commercially available spectrometers in the vis- 
NIR, NIR and MIR for their effectiveness, efficiency and usefulness for 
analyses of soil properties important for fertilizer decision tools. In a 
second step, the predicted soil data was coupled with the QUEFTS model 
to evaluate the effect of uncertainty on potential fertilizer recommen-
dations. Spectrometer-wise, the MIR and the portable vis-NIR were more 
costly than the handheld NIR. Besides, the benchtop MIR requires 
extended time for sample preparation (i.e., milling and sample loading). 
We showed that fertilizer decision for nitrogen and phosphorus can be 
made by use of spectra generated from spectrometers in the NIR, vis-NIR 
and MIR range in conjunction with the QUEFTS and soil-test based 
fertilizer models for site specific fertilizer application. The confidence 
interval indicated that the uncertainty could be acceptable than a 
blanket or uninformed decision for both environmental, productivity 
and input cost perspectives. Specifically, the NIR spectrometer would be 
applicable being low-cost and ease of applicability than the expensive 
benchtop MIR and vis-NIR spectrometers in the low-income countries 
whereby the estimation of nitrogen and phosphorus fertilizer were 
proven comparable to other expensive methods to generate soil infor-
mation. Our result didn’t include any comparison of the outcome of the 
recommendation with crop data. Hence, further study might be appro-
priate to evaluate the precision of the nitrogen and phosphorus fertilizer 
estimated by soil spectroscopic techniques with QUEFTS model with 
crop response. 
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