208 research outputs found
Why Modern Open Source Projects Fail
Open source is experiencing a renaissance period, due to the appearance of
modern platforms and workflows for developing and maintaining public code. As a
result, developers are creating open source software at speeds never seen
before. Consequently, these projects are also facing unprecedented mortality
rates. To better understand the reasons for the failure of modern open source
projects, this paper describes the results of a survey with the maintainers of
104 popular GitHub systems that have been deprecated. We provide a set of nine
reasons for the failure of these open source projects. We also show that some
maintenance practices -- specifically the adoption of contributing guidelines
and continuous integration -- have an important association with a project
failure or success. Finally, we discuss and reveal the principal strategies
developers have tried to overcome the failure of the studied projects.Comment: Paper accepted at 25th International Symposium on the Foundations of
Software Engineering (FSE), pages 1-11, 201
As-Soon-As-Possible Top-k Query Processing in P2P Systems
International audienceTop-k query processing techniques provide two main advantages for unstructured peer-to-peer (P2P) systems. First they avoid overwhelming users with too many results. Second they reduce significantly network resources consumption. However, existing approaches suffer from long waiting times. This is because top-k results are returned only when all queried peers have finished processing the query. As a result, query response time is dominated by the slowest queried peer. In this paper, we address this users' waiting time problem. For this, we revisit top-k query processing in P2P systems by introducing two novel notions in addition to response time: the stabilization time and the cumulative quality gap. Using these notions, we formally define the as-soonas-possible (ASAP) top-k processing problem. Then, we propose a family of algorithms called ASAP to deal with this problem. We validate our solution through implementation and extensive experimentation. The results show that ASAP significantly outperforms baseline algorithms by returning final top-k result to users in much better times
Expression of the transcription factor Hes3 in the mouse and human ocular surface, and in pterygium
Purpose: In this work we examined the presence of the neural stem cell biomarker Hairy and Enhancer of Split 3 (Hes3) in the anterior eye segment and in the aberrant growth condition of the conjunctiva pterygium. Further, we studied the response of Hes3 to irradiation.
Materials and methods: Adult mouse and human corneoscleral junction and conjunctiva, as well as human pterygium were prepared for immunohistochemical detection of Hes3 and other markers. Total body irradiation was used to study the changes in the pattern of Hes3 expression.
Results: The adult rodent and human eye as well as pterygium, contain a population of cells expressing Hes3. In the human eye, Hes3-expressing (Hes3+) cells are found predominantly in the subconjunctival space spanning over the limbus where they physically associate with blood vessels. The cytoarchitecture of Hes3 + cells is similar to those previously observed in the adult central nervous system. Furthermore, irradiation reduces the number of Hes3 + cells in the subconjunctival space. In contrast, irradiation strongly promotes the nuclear localization of Hes3 in the ciliary body epithelium.
Conclusions: Our results suggest that a recently identified signal transduction pathway that regulates neural stem cells and glioblastoma cancer stem cells also operates in the ocular surface, ciliary body, and in pterygium
Angiogenic Factors Stimulate Growth of Adult Neural Stem Cells
The ability to grow a uniform cell type from the adult central nervous system (CNS) is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC) found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4) and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2). These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration
Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro
Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker Ξ²-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF
p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation
A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm-/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway
Neutralization of LINGO-1 during In Vitro Differentiation of Neural Stem Cells Results in Proliferation of Immature Neurons
Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in Ξ²III tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for Ξ²III tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain
Sonic Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of Neocortical Progenitors
Innate lymphoid cells (ILCs) and innate-like lymphocytes have important roles in immune responses in the context of infection, cancer, and autoimmunity. The factors involved in driving the differentiation and function of these cell types remain to be clearly defined. There are several cellular signaling pathways involved in embryogenesis, which continue to function in adult tissue. In particular, the WNT, NOTCH, and Hedgehog signaling pathways are emerging as regulators of hematopoietic cell development and differentiation. This review discusses the currently known roles of WNT, NOTCH, and Hedgehog signaling in the differentiation and function of ILCs and innate-like lymphocytes
- β¦