26 research outputs found

    Direct cell mass measurements expand the role of small microorganisms in nature.

    No full text
    Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically-derived mass-to-volume relationships and large discrepancies exist between the available empirical conversion factors. Here we report a significant non-linear relationship between carbon mass and cell volume (mcarbon = 197 × V0.46.; R2 = 0.95) based on direct cell mass, volume and elemental composition measurements of twelve prokaryotic species with average volumes between 0.011 – 0.705 μm3. The carbon mass density of our measured cells ranged from 250 to 1800 fg C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300 % higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (> 0.5 μm3) display a constant (carbon) mass-to-volume ratio whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally-determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass

    Sediment acidification and temperature increase in an artificial CO2 vent

    Get PDF
    We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface

    Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., Kuypers, M. M. M., Graf, J. S., & Milucka, J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 119(9), (2022): e2106628119, https://doi.org/10.1073/pnas.2106628119.Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m−2 ⋅ d−1. Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.This project was funded by theMax Planck Society

    Sugars dominate the seagrass rhizosphere

    Get PDF
    Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to mu M concentrations-nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres. Seagrass meadows are important carbon sinks. Here, the authors show that organic carbon in the form of simple sugars can accumulate at high concentrations in seagrass rhizospheres because plant phenolic compounds inhibit their consumption by microorganisms

    Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems

    Get PDF
    From individual cells to whole organisms, O2 transport unfolds across micrometer- tomillimeter-length scales and can change within milliseconds in response to fluid flows and organismal behavior. The spatiotemporal complexity of these processes makes the accurate assessment ofO2 dynamics via currently availablemethods difficult or unreliable. Here, we present ‘‘sensPIV,’’ a method to simultaneously measure O2 concentrations and flow fields. By tracking O2-sensitive microparticles in flow using imaging technologies that allow for instantaneous referencing,we measuredO2 transport within (1) microfluidic devices, (2) sinking model aggregates, and (3) complex colony-forming corals. Through the use of sensPIV, we find that corals use ciliary movement to link zones of photosynthetic O2 production to zones of O2 consumption. SensPIV can potentially be extendable to study flow-organism interactions across many life-science and engineering applications

    Spatial and temporal patterns of pore water chemistry in the inter-tidal zone of a high energy beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Spatial and Temporal Patterns of Pore Water Chemistry in the Inter-Tidal Zone of a High Energy Beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Nutrients that limit growth in the ocean

    No full text
    corecore