194 research outputs found

    Design optimisation problems of stress corrosion in welded joints in 7000 alloy

    Get PDF
    The use of thick plates of high-strength aluminium alloys, in specific welded structures, gives the designer many optimisation problems concerning the prediction and elimination of brittle fracture in the welded joints, caused by stress corrosion in the zone next to the weld beads. The Istituto Sperimentale dei Metalli Leggeri has faced and worked out these problems, in parallel with investigations of a metallurgical nature concerning the microstructural characteristics of the base metal in the heat affected zone (HAZ) next to the weld.The results of these studies enabled us to define, with the aid of appropriate structural calculation techniques, some design schemes which ensure a high resistance to brittle fracture by stress corrosion in special welded joints. This paper investigates and discusses such problems

    Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation

    Get PDF
    This work is aimed at exploring the recovery of heavy metals from the fine fraction of solid waste incineration bottom ash. For this study, wet-discharged bottom ash fine-fraction samples from full-scale treatment plants in Germany and Sweden were analyzed. The potential for the recovery of heavy metal compounds was investigated through wet density-separation with a shaking table. The feed materials were processed without any pre-treatment and the optimum processing conditions were determined by means of design of experiments. Tilt angle and stroke frequency were identified as the most relevant parameters, and the optimum settings were − 7.5° and 266 rpm, respectively. The obtained balanced copper enrichments (and yields) were 4.4 (41%), 6.2 (28%) and 2.4 (23%). A maximum copper enrichment of 14.5 with 2% yield was achieved, providing a concentrate containing 35.9 wt.% relevant heavy metal elements. This included 26.3 wt.% iron, 4.3 wt.% zinc and 3.8 wt.% copper. In conclusion, density separation with shaking tables can recover heavy metals from bottom ash fine fractions. Medium levels of heavy metal enrichment (e.g., for Cu 2.7–4.4) and yield (Cu: 26–41%) can be reached simultaneously. However, the separation performance also depends on the individual bottom ash sample

    15-deoxy-Delta(12,14)-Prostaglandin J(2) inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism

    Get PDF
    Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors

    A thiol redox sensor in soluble epoxide hydrolase enables oxidative activation by intra-protein disulfide bond formation

    Get PDF
    Soluble epoxide hydrolase (sEH), an enzyme that broadly regulates the cardiovascular system, hydrolyses epoxyeicosatrienoic acids (EETs) to their corresponding dihydroxyeicosatrienoic acids (DHETs). We previously showed that endogenous lipid electrophiles adduct within the catalytic domain, inhibiting sEH to lower blood pressure in angiotensin II-induced hypertensive mice. As angiotensin II increases vascular H2O2, we explored sEH redox regulation by this oxidant and how this integrates with inhibition by lipid electrophiles to regulate vasotone. Kinetics analyses revealed that H2O2 not only increased the specific activity of sEH but increased its affinity for substrate and increased its catalytic efficiency. This oxidative activation was mediated by formation of an intra-disulfide bond between C262 and C264, as determined by mass spectrometry and substantiated by biotin-phenylarsinate and thioredoxin-trapping mutant assays. C262S/264S sEH mutants were resistant to peroxide-induced activation, corroborating the disulfide-activation mechanism. The physiological impact of sEH redox state was determined in isolated arteries and the effect of the pro-oxidant vasopressor angiotensin II on arterial sEH redox state and vasodilatory EETs indexed in mice. Angiotensin II induced the activating intra-disulfide in sEH, causing a decrease in plasma EET/DHET ratios that is consistent with the pressor response to this hormone. Although sEH C262–C264 disulfide formation enhances hydrolysis of vasodilatory EETs, this modification also sensitized sEH to inhibition by lipid electrophiles. This explains why angiotensin II decreases EETs and increases blood pressure, but when lipid electrophiles are also present, that EETs are increased and blood pressure lowered

    15-deoxy-Δ12,14-Prostaglandin J2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism

    Get PDF
    Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ12,14- Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors

    A randomized trial of laparoscopic versus open surgery for rectal cancer.

    Get PDF
    Background Laparoscopic resection of colorectal cancer is widely used. However, robust evidence to conclude that laparoscopic surgery and open surgery have similar outcomes in rectal cancer is lacking. A trial was designed to compare 3-year rates of cancer recurrence in the pelvic or perineal area (locoregional recurrence) and survival after laparoscopic and open resection of rectal cancer. Methods In this international trial conducted in 30 hospitals, we randomly assigned patients with a solitary adenocarcinoma of the rectum within 15 cm of the anal verge, not invading adjacent tissues, and without distant metastases to undergo either laparoscopic or open surgery in a 2:1 ratio. The primary end point was locoregional recurrence 3 years after the index surgery. Secondary end points included disease-free and overall survival. Results A total of 1044 patients were included (699 in the laparoscopic-surgery group and 345 in the open-surgery group). At 3 years, the locoregional recurrence rate was 5.0% in the two groups (difference, 0 percentage points; 90% confidence interval [CI], −2.6 to 2.6). Disease-free survival rates were 74.8% in the laparoscopic-surgery group and 70.8% in the open-surgery group (difference, 4.0 percentage points; 95% CI, −1.9 to 9.9). Overall survival rates were 86.7% in the laparoscopic-surgery group and 83.6% in the open-surgery group (difference, 3.1 percentage points; 95% CI, −1.6 to 7.8). Conclusions Laparoscopic surgery in patients with rectal cancer was associated with rates of locoregional recurrence and disease-free and overall survival similar to those for open surgery. (Funded by Ethicon Endo-Surgery Europe and others; COLOR II ClinicalTrials.gov number, NCT00297791.

    PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation.

    Get PDF
    OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240

    PDXK mutations cause polyneuropathy responsive to PLP supplementation

    Get PDF
    OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on ATP-binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology and biochemical quantification. RESULTS: We identified bi-allelic mutations in PDXK in five individuals from two unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP-binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in one family, improvement in power, pain and fatigue contributing to patients regaining their ability to ambulate during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown aetiology characterised by reduced PLP levels. This article is protected by copyright. All rights reserved

    A scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy

    No full text
    corecore