51 research outputs found

    POINT-WISE CLASSIFICATION OF HIGH-DENSITY UAV-LIDAR DATA USING GRADIENT BOOSTING MACHINES

    Get PDF
    Point-wise classification of 3D point clouds is a challenging task in point cloud processing, whereas, in particular, its application to high-density point clouds needs special attention because a large number of point clouds affect computational efficiency negatively. Although deep learning based models have been gaining popularity in recent years and have reached state-of-the-art results in accuracy for point-wise classification, their requirements of the high number of training samples and computational resources make those models inefficient for high-density 3D point clouds. However, traditional machine learning classifiers require less training samples, so they are capable of reducing computational requirements, even considering the latest machine learning classifiers, particularly in ensemble learning of gradient boosting machines, the results can compete with deep learning models. In this study, we are studying the point-wise classification of high-density UAV LiDAR data and focusing on efficient feature extraction and a recent state-of-the-art gradient boosting machine learning classifier, LightGBM. Our proposed framework includes the following steps: at first, we are using point cloud sampling for creating sub-sampled point clouds, then we are calculating the features based on those scales implemented on GPU. Finally, we are using the LightGBM classifier for training and testing. For the evaluation of our framework, we used a publicly available benchmark dataset, Hessigheim 3D. According to the results, we achieved an overall accuracy of 87.59% and an average F1 score of 75.92%. Our framework has promising results and scores closer to deep learning models. However, more distinctive features are required to obtain more accurate results

    EVALUATION OF DEM DERIVED BY REPEAT-PASS X-BAND STRIPMAP MODE PAZ DATA

    Get PDF
    Abstract. This paper, presents the initial results of digital elevation model (DEM) extraction from PAZ Synthetic Aperture Radar (SAR) satellite images using repeat-pass interferometric analysis. We used a multi-temporal high-resolution strip-map mode X-band satellite image that has a single polarization. Five main classes, i.e., volcanic structures, agriculture, settlement, sand dune and plain bareland are considered depending on the structure of the region. Within the category, the coherence value and DEM value are evaluated. In the accuracy assessment analysis, a reference map produced from aerial photogrammetry is used. Additionally, global DEM TanDEM-X data is also tested in the study region. In the analysis, quality metrics, mean error (ME), root means square error (RMSE), standard deviation (STD), and the normalized median absolute deviation (NMAD) are used. The results showed that as the temporal baseline increases the coherence values and the quality of the DEM product decrease. The RMSE values range between 2.36 m to 7.09 m in different classes. The TanDEM-X data provided high accuracies over each class range from 0.88 m to 2.40 m. Since the study area is vulnerable to sinkhole formation, sinkhole-like signals were also observed in the interferograms obtained from different and sequential pairs. The high-resolution repeat-pass PAZ data pointed out its potential for interferometric products generation

    MONITORING THE SLOWLY DEVELOPING LANDSLIDE WITH THE INSAR TECHNIQUE IN SAMSUN PROVINCE, NORTHERN TURKEY

    Get PDF
    Landslides are prominent natural events with high destructive power. Since they affect large areas, it is important to monitor the areas they cover and analyse their movement. Remote sensing data and image processing techniques have been used to monitor landslides in different areas. Synthetic aperture radar (SAR) data, particularly with the Interferometric SAR (InSAR) method, is used to determine the velocity vector of the surface motion. This study aims to detect the landslide movements in Samsun, located in the north of Turkey, using persistent scattering InSAR method. Archived Copernicus Sentinel-1 satellite images taken between 2017 and 2022 were used in both descending and ascending directions. The results revealed surface movements in the direction of the line of sight, ranging between −6 and 6 mm/year in the study area. Persistent Scatterer (PS) points were identified mainly in human structures such as roads, coasts, ports, and golf courses, especially in settlements. While some regions exhibited similar movements in both descending and ascending results, opposite movements were observed in some regions. The results produced in both descending and ascending directions were used together and decomposed into horizontal and vertical deformation components. It was observed that the western coastal part experienced approximately 4.5 cm/year vertical deformation, while the central part there is more significant horizontal deformation, reaching up to approximately 6 cm/year

    AN APPLICATION OF ROLL-INVARIANT POLARIMETRIC FEATURES FOR CROP CLASSIFICATION FROM MULTI-TEMPORAL RADARSAT-2 SAR DATA

    Get PDF
    Crops are dynamically changing and time-critical in the growing season and therefore multitemporal earth observation data are needed for spatio-temporal monitoring of the crops. This study evaluates the impacts of classical roll-invariant polarimetric features such as entropy (H), anisotropy (A), mean alpha angle (α) and total scattering power (SPAN) for the crop classification from multitemporal polarimetric SAR data. For this purpose, five different data set were generated as following: (1) Hα, (2) HαSpan, (3) HαA, (4) HαASpan and (5) coherency [T] matrix. A time-series of four PolSAR data (Radarsat-2) were acquired as 13 June, 01 July, 31 July and 24 August in 2016 for the test site located in Konya, Turkey. The test site is covered with crops (maize, potato, summer wheat, sunflower, and alfalfa). For the classification of the data set, three different models were used as following: Support Vector Machines (SVMs), Random Forests (RFs) and Naive Bayes (NB). The experimental results highlight that HαASpan (91.43 % for SVM, 92.25 % for RF and 90.55 % for NB) outperformed all other data sets in terms of classification performance, which explicitly proves the significant contribution of SPAN for the discrimination of crops. Highest classification accuracy was obtained as 92.25 % by RF and HαASpan while lowest classification accuracy was obtained as 66.99 % by NB and Hα. This experimental study suggests that roll-invariant polarimetric features can be considered as the powerful polarimetric components for the crop classification. In addition, the findings prove the added benefits of PolSAR data investigation by means of crop classification

    Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area

    No full text
    Remote sensing data utilize valuable information via various satellite sensors that have different specifications. Image fusion allows the user to combine different spatial and spectral resolutions to improve the information for purposes such as forest monitoring and land cover mapping. In this study, I assessed the contribution of dual-polarized Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar data to multispectral Landsat imagery. The research investigated the separability of forested areas using different image fusion techniques. Quality analysis of the fused images was conducted using qualitative and quantitative analyses. I applied the support vector machine image classification method for land cover mapping. Among all methods examined, the à trous wavelet transform method best differentiated the forested area with an overall accuracy (OA) of 94.316%, while Landsat had an OA of 92.626%. The findings of this study indicated that optical-SAR-fused images improve land cover classification, which results in higher quality forest inventory data and mapping. © 2016 Informa UK Limited, trading as Taylor & Francis Group

    Assessment of ALOS PALSAR 25-m mosaic data for land cover mapping

    No full text
    9th International Workshop on the Analysis of Multitemporal Remote Sensing Images, MultiTemp 2017 -- 27 June 2017 through 29 June 2017 -- -- 130873In this study, performance of the Global 25m resolution ALOS-PALSAR mosaic and forest/non-forest map generated by Japan Space Exploration Agency's - JAXA was addressed. PALSAR imagery has dual polarimetric data (HH and HV) and these dataset are open and freely available. An additional band applying difference of two polarizations (HH-HV) was added as a third band. For the study area most populated city of Turkey Istanbul is selected due to its rapid and dense expanse. For the evaluation 2010 and 2015 mosaic PALSAR data was classified using k-Nearest Neighbors (k-NN) method as a practical image classification approach. Moreover, an accuracy analysis for the forest/non-forest maps was also investigated to expose its misleading interpretation. A change detection analyses was conducted to estimate the changes from 2010 to 2015. In addition to these, the classified data was compared with 30m GlobeLand30 global data product. Results indicated that high rate classification result as 86% and 89% overall was obtained by k-NN with the three bands of ALOS-PALSAR mosaic data of 2010 and 2015, respectively. © 2017 IEEE.ACKNOWLEDGMENT The research is supported by the Bulent Ecevit University. The ALOS data is provided by JAXA and the GlobeLand30 data set is provided by the National Geomatics Center of China. (DOI:10.11769/GlobeLand30.2010.db)

    Preliminary results of temporal deformation analysis in Istanbul using multi-temporal InSAR with sentinel-1 SAR data

    No full text
    Geoscience and Remote Sensing Society (GRSS);The Institute of Electrical and Electronics Engineers (IEEE)38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 -- 22 July 2018 through 27 July 2018 -- -- 141934Multi-temporal differential synthetic aperture radar interferometry techniques are well-developed and beneficial tools for deformation analysis using remotely sensed images. The primary objective of the study is to investigate the capability and the performance of the new generation SAR system Sentinel-1 data to detect and monitor surface deformation. We combined open source tools of Sentinel Application Platform (SNAP) and Stanford Method for Persistent Scatterers (StaMPS) for data processing. The results highlight the recent surface displacement rates over the Istanbul city. The deformation rates reach up to approximately 8 mm/yr over a 4 year period. © 2018 IEEE

    The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: a comparative analysis

    No full text
    Rapid and irregular urbanization is an essential issue in terms of environmental assessment and management. The dynamics of landscape patterns should be observed and analyzed by local authorities for a sustainable environment. The aim of this study is to determine which spectral urban index, originated from old Landsat missions, represents impervious area better when new generation Earth observation satellite Landsat 8 data are used. Two datasets of Landsat 8, acquired on 2 September 2013 and 10 September 2016, were utilized to investigate the consistency of the results. In this study, commonly used urban indices namely normalized difference built-up index (NDBI), index-based built-up index (IBI), urban index (UI), and enhanced built-up and bareness index (EBBI) were utilized to extract impervious areas. The accuracy assessment of urban indices was conducted by comparing the results with pan-sharpened images, which were classified using maximum likelihood classification (MLC) method. The kappa values of MLC, IBI, NDBI, EBBI, and UI for 2013 dataset were 0.89, 0.79, 0.71, 0.59, and 0.49, respectively, and the kappa values of MLC, IBI, NDBI, EBBI, and UI for 2016 dataset were 0.90, 0.78, 0.70, 0.56, and 0.47, respectively. In addition, area information was extracted from indices and classified images, and the obtained outcomes showed that IBI presented better results than the other urban indices, and UI extracted impervious areas worse than the other indices in both selected cases. Consequently, Landsat 8 satellite data can be considered as an important source to extract and monitor impervious surfaces for the sustainable development of cities. © 2018, Springer International Publishing AG, part of Springer Nature

    Balanced vs imbalanced training data: Classifying rapideye data with support vector machines

    No full text
    23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016 -- 12 July 2016 through 19 July 2016 -- -- 122460The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping the crop types was addressed. Classification with imbalanced training data may result in low accuracy in some scenarios. Support Vector Machines (SVM), Maximum Likelihood (ML) and Artificial Neural Network (ANN) classifications were implemented here to classify the data. For evaluating the influence of the balanced and imbalanced training data on image classification algorithms, three different training datasets were created. Two different balanced datasets which have 70 and 100 pixels for each class of interest and one imbalanced dataset in which each class has different number of pixels were used in classification stage. Results demonstrate that ML and NN classifications are affected by imbalanced training data in resulting a reduction in accuracy (from 90.94% to 85.94% for ML and from 91.56% to 88.44% for NN) while SVM is not affected significantly (from 94.38% to 94.69%) and slightly improved. Our results highlighted that SVM is proven to be a very robust, consistent and effective classifier as it can perform very well under balanced and imbalanced training data situations. Furthermore, the training stage should be precisely and carefully designed for the need of adopted classifier
    corecore