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ABSTRACT: 

 
Point-wise classification of 3D point clouds is a challenging task in point cloud processing, whereas, in particular, its application to 

high-density point clouds needs special attention because a large number of point clouds affect computational efficiency negatively. 

Although deep learning based models have been gaining popularity in recent years and have reached state-of-the-art results in 

accuracy for point-wise classification, their requirements of the high number of training samples and computational resources make 

those models inefficient for high-density 3D point clouds. However, traditional machine learning classifiers require less training 

samples, so they are capable of reducing computational requirements, even considering the latest machine learning classifiers, 

particularly in ensemble learning of gradient boosting machines, the results can compete with deep learning models. In this study, 

we are studying the point-wise classification of high-density UAV LiDAR data and focusing on efficient feature extraction and a 

recent state-of-the-art gradient boosting machine learning classifier, LightGBM. Our proposed framework includes the following 

steps: at first, we are using point cloud sampling for creating sub-sampled point clouds, then we are calculating the features based 

on those scales implemented on GPU. Finally, we are using the LightGBM classifier for training and testing. For the evaluation of 

our framework, we used a publicly available benchmark dataset, Hessigheim 3D. According to the results, we achieved an overall 

accuracy of 87.59% and an average F1 score of 75.92%. Our framework has promising results and scores closer to deep learning 

models. However, more distinctive features are required to obtain more accurate results. 

 

1. INTRODUCTION 

 
Three-dimensional (3D) point clouds are one of the main data 

sources in remote sensing and related fields. It is a common 

practice to use 3D point cloud-derived products (e.g., Digital 

Terrain Models or Digital Surface Models) as an additional 

dataset for height information along with remote sensing im- 

ages. On the other hand, their direct processing has been gain- 

ing its popularity because i) denser and more accurate 3D point 

clouds are available, ii) more information can be obtained from 

3D point clouds, iii) more representative objects are possible 

in 3D point clouds, iv) emerging fields (such as autonomous 

cars) require direct 3D point cloud processing. One of the fore- 

most steps of point-cloud processing is labeling each point in 

the point cloud into a predefined semantic category, namely 

point-wise classification. A variety of remote sensing applic- 

ations are based on point-wise classification, such as change 

detection, ground filtering, and urban monitoring. Thus, point- 

wise classification for 3D point clouds is an important topic in 

3D point cloud processing and is an open area considering re- 

cent emerging fields. 

 

3D point clouds include a few problematic issues: variable size 

of objects: a variety of objects exist in the data, for example 

cars and buildings may need different considerations for fea- 

ture extraction and object recognition; heterogeneous density 

and incomplete objects: because of occlusion, a part of the ob- 

jects may not be represented in the point clouds, whereas het- 

erogeneous density is a natural property of point clouds; irreg- 

ular structure: a point cloud irregularly represents objects on 

the surface; high density: since advancements in sensor tech- 

nology and methods, a high number of points are possible in 
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point clouds, which makes the processing computationally bur- 

densome. In this study, we propose a feature calculation frame- 

work considering different sizes of objects in high-density UAV 

LiDAR dataset. A machine learning (ML) classifier then labels 

each point in the point cloud using those features in our frame- 

work. 

ML based models have started to play a key role in the liter- 

ature for point-wise classification of 3D point clouds similar 

to other remote sensing tasks in recent years. Even though 

deep learning (DL) of neural networks based end-to-end ap- 

proaches, which profit from automatic feature extraction and 

selection, have started to dominate 3D point cloud processing, 

hand-crafted features still maintain their importance in point- 

wise classification, since they have generally been preferred as 

an additional dimension for increasing accuracy in many DL 

models. Instead of using them in a deep framework, which re- 

quires high computational resources and large amounts of train- 

ing samples, a careful selection of neighborhood definitions and 

sampling strategies is going to reduce the cost of deep models 

and approaching state-of-the-art results, as deep models have. 

Therefore, in this study, we use a recent state-of-the-art ML 

classifier using hand-crafted features for point-wise classifica- 

tion. 

At first, our study efficiently extracts the features from a high- 

density 3D point cloud dataset. Since multiple scales allow one 

to aggregate more information from a variety of sizes of objects 

in the dataset, we are following a multi-scale feature extrac- 

tion approach. Using a single type of neighborhood, we extract 

the features for each level prioritizing the computational cost. 

Second, we consider a recent ensemble learning method in ML, 

particularly gradient-boosting machines, which is increasing its 

popularity in tabular data processing, even superseding deep 
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models. We take into account their efficiency as well as their 

performance and high potential usage in point cloud analysis. 

In the last step, we compare our results with DL models on a 

UAV-LiDAR-based benchmark dataset. 

The rest of the study is organized as follows: we present the 

related work in Section 2, then we describe our methodology 

in Section 3. In Section 4, we define our dataset and give our 

experimental results on this dataset. We compare our results    

with previous studies and summarize the study in Section 5. 

 
2. RELATED WORKS 

 
There exist various studies for point-wise classification of 3D 

point clouds using a type of ML method. Those ML approaches 

can be categorized into traditional models, where features are 

extracted manually and then a classifier is applied, and deep 

models, where feature extraction and classification are per- 

formed together without any requirement of feature engineer- 

ing. One of the review studies (Xie et al., 2020) gives overall 

literature on the 3D point cloud classification, and we give a 

brief overview of the 3D point cloud classification based on the 

above categorization. 

A typical traditional ML framework for 3D point cloud classi- 

fication includes a few steps: neighborhood definition, feature 

extraction and selection, and classification. Therefore, the 3D 

point cloud classification using ML methods follows this frame- 

work based on the different aspects of the above steps (Wein- 

mann et al., 2015). 

Taking into account high-density LiDAR datasets, multi-scale 

feature extraction has been performed using sampling tech- 

niques. For this purpose, voxel sampling with the k-nearest 

neighbor search (Hackel et al., 2016) and grid sampling with 

radius search (Thomas et al., 2018) have previously been used 

in the classification of point clouds. The disadvantage of these 

sampling methods is that they produce regular samples from 

the irregular point cloud. However, irregular sampling meth- 

ods produce more representative details. Random sampling, 

the cheapest method for memory and computational complex- 

ity, is the fastest method for irregular sampling; thus, it may 

cause losing important information, which leads to fewer dis- 

tinctive features. Instead, Poisson sampling still produces irreg- 

ular samples but also takes into account the spatial distribution 

of the points on the surface. 

A few neighborhoods have been proposed in the literature. 

Spherical and k-nearest neighbors are the most commonly used 

types, where the points in a distance of the sphere are of interest 

and a particular number of neighbors are found without radius. 

A combination of those two is popular in DL frameworks and 

guarantees the k number of points in an r radius. In addition 

to that, the cylindrical neighborhood is preferred (Niemeyer et 

al., 2014), which is a 2D projected version of the 3D radius 

search. The important factor in the neighborhood definition is 

to select a suitable parameter, which is r or k. Once selected as 

a large value, the computational cost is increasing, while it can 

be small and details may be lost. Empirical selection is gener- 

ally preferred in the literature and the selection depends on the 

size of objects in the dataset. 

In addition to those traditional ML models, deep neural net- 

works have made a tremendous attack on 3D point cloud ana- 

lysis in recent years. It is common to create feature images from 

point clouds and use them in a regular Convolutional Neural 

Network (CNN); moreover, voxelization is another approach 

for data regularization and is preferred in the literature. Raw 

point cloud based methods, on the other hand, allow one to dir- 

ectly process point cloud data in a DL model. At first, the study 

of PointNet (Qi et al., 2017a) has shown the permeation invari- 

ant neural network for direct 3D point cloud processing in DL, 

but it lacks hierarchical information aggregation; therefore, the 

same authors proposed the PointNet++(Qi et al., 2017b) deep 

network proposing hierarchical feature extraction by down/up 

sampling and information aggregation. Then, inspired by the 

convolution of the images, KpConv (Thomas et al., 2019), pro- 

poses learning the local structure of the point clouds in the ker- 

nel. The advantage of this type of neural networks is that they 

can capture more local information than PointNet++ type deep 

models. More details on DL models in 3D point cloud classi- 

fication are presented in (Zhang et al., 2019; Bello et al., 2020; 

Guo et al., 2020). 

In this study, we are considering the efficient processing of 

high-density UAV-LiDAR data using a traditional ML frame- 

work. The selection of the classifier was performed according 

to the latest state-of-the-art ML classifiers. We also compare the 

results with deep models, and take one of the highly used ML 

classifiers in the 3D point cloud processing, Random Forest, as 

a baseline. 

Our study mainly differs from the previous studies (Thomas et 

al., 2018; Hackel et al., 2016) based on our subsampling tech- 

nique, where our output is still irregular data format and the ML 

classifier, where we are using gradient boosting based ensemble 

learning method. 

 
3. METHODOLOGY 

 
We are following a traditional ML framework for 3D point 

cloud classification, focusing on the efficiently multi-scale fea- 

ture extraction for a high density UAV-LiDAR point cloud and 

the application of one of the gradient boosting machine clas- 

sifiers, LightGBM, to the extracted feature set. The proposed 

framework is shown schematically in Figure 1. It includes the 

steps: i) in the first step, the data have been sampled using Pois- 

son sampling, where in each step the number of points is re- 

duced based on the predefined distance; ii) multi-scale features 

have been computed for each scale based on radius neighbor- 

hood; iii) in the last step, the LightGBM classifier has been 

applied to the training data, where it is important to note that 

considering the class imbalance, an equal number of points are 

selected in the data. The details of the proposed framework are 

discussed in the following paragraphs. 

Neighborhood determination is a time-consuming operation in 

feature extraction; considering dense data, it is computationally 

cumbersome. On the other hand, all points in a neighborhood 

are not needed for the feature calculation process. Therefore, 

it is common to work with sub-sampled versions of the point 

cloud data, while it is a factor for the reduction of computa- 

tional cost, and at the same time may cause information loss. 

As shown in Figure 2, the efficiency is obtained by sampling. 

In the literature, there exist a few sampling methods based on 

these categories: Regular and Irregular. Regular sampling 

methods produce regular sampling from irregular point clouds. 

3D voxelization is commonly used in DL, even for regularizing 

the point cloud data for further CNN-like neural networks. 
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Figure 1. The proposed framework for this study. 

Figure 3. Various size of objects in the 3D point cloud 

data requires multi-scale neighborhood. 
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Figure 2. The sampling reduces the computational cost of 

feature calculation. 

 
A 2D version also exists and projects the 3D point cloud onto a 

2D surface. The irregular sampling methods, as the name 

implies, produce irregular point clouds. Random sampling is the 

first method in this group that reduces the number of points to 

the desired number by random selection. It is the fastest 

method, but it is highly possible to lose useful information. 

Another similar method is Poisson sampling, which takes 

advantage of the Euclidean distance between each point in the 

point cloud. It also keeps spatial objects’ details, as well as is a 

computationally faster method. Therefore, we select Poisson 

sampling in this framework. 

However, 3D point clouds include a variety of objects of vary- 

ing sizes so that information loss is possible in a single neigh- 

borhood (Figure 3). Thus, it is common to use multi-scale 

neighborhoods to capture more information from various sizes 

of objects. In a dense UAV-LiDAR dataset, using multiple ra- 

dius search on the raw data is going to cause a considerable 

computational problem. Instead, working with sub-sampled 

versions of the point cloud led to an efficient way to compute 

features. At each scale, while the radius is increasing, the num- 

ber of points in the neighborhood remains close to each other at 

each level; for that reason, starting from small to large objects, 

a useful feature set is obtained. As shown in Figure 4, the char- 

acteristics of objects of different sizes are captured efficiently. 

After the neighbors of the points in the point cloud are calcu- 

Figure 4. Multiple scales reduce the computational cost. 

It  should be note that n1 > n2 > n3 and r1 < r2 < r3. 

 
lated, the features are computed using that information. Since 

our goal is to easily compute the features, we prefer light- 

weight features, which are calculated in one step and do not 

require additional computational steps. Therefore, we use 

eigenvalue-based features in the first step. They are based on the 

covariance matrix of the neighborhood. Eigenvalues and eigen- 

vectors are derived from the covariance matrix by eigendecom- 

position. Then, the eigenvalue and eigenvector-based features, 

namely, geometric features, are calculated. Another lightweight 

feature set is based on the height values of the neighbors. The 

mean and variance of neighbors are added to the height fea- 

ture set. Additionally, because they were provided, we added 

color and intensity values to our feature set with their mean and 

variance values. In total, we have 31 features per scale, which 

consists of 18 geometric, 5 height, 6 colors, and 2 intensity fea- 

tures. As a sum, we add the xyz coordinate values, RGB, and 

intensity values. 

In the last step, we apply our ML classifier to the feature set. 

RF (Breiman, 2001) classifier is one of the most popular clas- 

sifiers in 3D point cloud classification. RF is a bagging-based 

ensemble learning method, which relies on a collection of weak 

learners of decision trees. On the other hand, boosting based en- 

semble learning classifiers have been gaining popularity, partic- 

ularly in the tabular data processing. Although they have been 

proposed in other studies, their potential has not been investig- 

ated in the point-wise classification of 3D point clouds before. 

Gradient boosting machines have various versions in the liter- 

ature. Gradient boosting is based on iteratively updating the 
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previous tree based on the results. Therefore, at each iter- 

ation, a weak learner decision tree turns out to be a strong 

learner. Among other implementations, XgBoost (Chen and 

Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018), we 

select LightGBM (Ke et al., 2017), because of the property of 

Gradient-based One-Side Sampling (GOSS), which saves the 

memory in processing and leads to faster training. 

 

In the next section, we define the application of this framework 

to a dense UAV-LiDAR point cloud. 

 
Number of points (%) per class in H3D dataset 
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4. EXPERIMENT AND RESULTS 

 
In this section, we describe the dataset in the next subsection, 

then we give details of our implementation, and then in the sub- 

section we give the results compared with other methods in the 

literature. 

 

4.1 Dataset 

We would like to test our feature set and LightGBM classifier 

performance compared with other methods; we select a pub- 

licly available dataset:  Hessigheim 3D (H3D) dataset1  (Kölle 

et al., 2021). It was collected from a RIEGL Ricopter platform 

mounted on a Riegl VUX-1LR LiDAR sensor in Hessigheim, 

Germany. Additionally, two Sony Alpha 6000 cameras cap- 

tured image data at the same time. The dataset consists of four 
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phases and we are interested in the phase of March 2018. Data 

are split into training, validation, and testing by default. Train- 

ing and validation include intensity and RGB values, while the 

testing tile does not have class labels. Verification of the al- 

gorithm is performed through the benchmark website. 

The dataset consists of elevation classes, namely, low vegeta- 

tion, impervious surface, vehicle, urban furniture, roof, facade, 

shrub, tree, soil/gravel, vertical surface, and chimney. The dis- 

Number of points (%) 
 

 

Figure 5. Class distribution in H3D dataset. Testing labels 

are  not shared publicly. 

 
 

P = 
TP 

(2) 
TP + FP 

tribution of the training and validation data class is given in 

Figure 5. The dataset includes 60M,14M, and 50M points for 

training, validation, and testing splits. , 

4.2 Implementation 

R = 
TP 

TP + FN 

F 1 =
 2 × TP  

2 × TP + FP + FN 

(3) 

 

(4) 

 
We implemented the proposed methodology using a few tools: 

i) multi-scale sampling with Poission sampling is performed 

using Point Distribution Library (PDAL) (PDAL contributors, 

2022). ii) Feature calculation includes two phases: in the first 

phase we find the neighbors on the GPU using the Point Cloud 

Library (Rusu and Cousins, 2011), then, at the second phase, 

we calculate the features on the CPU in fully parallel. The 

implementation script is written in CPP. iii) The classification 

and evaluation scripts written in the Python programming lan- 

guage using the LightGBM official repository and the scikit- 

learn (Pedregosa et al., 2011) evaluation functions. Visual- 

ization and other data-intensive operations are performed on 

CloudCompare2. 

 
4.3 Evaluation 

 
We are evaluating our results by the following metrics. 

OA = 
TP + TN 

(1) 
TP + TN + FP + FN 

 
 

1 https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/Default.aspx 
2 https://www.danielgm.net/cc/ 

where TP, TN, FP, FN represent true positive, true negative, 

false positive, false negative, respectively. We are also reporting 

qualitative visuals and confusion matrix which are provided by 

the dataset provider after submitting our results. 

4.4 Results 

We used the training and validation dataset for parameter es- 

timation, then the trained model is used for testing labels. The 

visuals and the confusion matrix were obtained from the bench- 

mark website. 

The training data are sampled into 8 levels, then 25K points for 

each class, a total of 275K, are randomly selected. For those 

samples, the aforementioned feature sets are calculated in the 

radius neighborhood starting from 0.25m. After having the fea- 

tures, the LightGBM classifier is run with the optimum para- 

meters.   The last prediction for the benchmark also includes 

15K points from the validation dataset, which means a total of 

440K points. 

According to the testing results depicted in Figure 6 as a con- 

fusion matrix, our framework has 87.59% in overall accuracy 
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≈ 

and 75. 92% in the average F1 measure. We interpret the 

classes’ precision and recall scores, where precision shows how 

the framework works with the predicted values, and recall is 

an indicator of how the framework performs with actual labels, 

as well as the confusion between classes. The highest preci- 

sion/recall scores were obtained in the roof and tree classes; 

however, the gravel class has the lowest recall score and the 

shrub and urban furniture classes have the lowest precision 

score. The class of low vegetation, impervious surfaces, roof, 

tree, and chimney has a minimum number of samples confused 

with other classes. However, the remaining classes have more 

confusion samples than the others. 11% and 7% of the class of 

cars were mislabeled as roof and urban furniture, respectively. 

Similarly, in the class of urban furniture, 11% of the samples 

labeled facade and 12% of the samples labeled shrub. The 

facade, shrub, and vertical surface classes share similar con- 

fusion patterns at some level. On the contrary, in the gravel 

class, we have severe confusion with particularly low veget- 

ation and impervious surfaces. This class was mislabeled as 

45% and 37% as low vegetation and impervious surfaces, re- 

spectively. For the same class, we have 71% precision and 14% 

recall scores, indicating that we labeled some predicted values 

as gravel with 71%, but only 14% of them were correct. It is 

clear that those classes require more distinctive color informa- 

tion. 

 
The benchmark website also provides visuals of the testing la- 

bels; unfortunately, the testing labels are not shared with the 

public. We can see the same confusion patterns in the visuals 

in Figure 7. Red circles show examples of confusion with car 

classes, while blue and green circles indicate confusion with 

urban furniture. More visuals can be obtained through actual 

labels. 

 
Overall, the results indicate that our feature set and ML classi- 

fier perform well on this dataset, although some classes suffer 

from confusion with other classes with low precision and re- 

call scores. In the next section, we will evaluate our framework 

compared to previous approaches. 
 

 

Figure 6. Confusion matrix for the results of the predicted 

points in  the test area. 

5. DISCUSSION AND CONCLUSION 

 
We compare the results of our framework with previous stud- 

ies compiled from the results section of the benchmark website 

(Table 1). We only took the published results, as we were un- 

able to see the details of the unpublished approach. It should 

be noted that taking published results was our only criterion, 

although there are a few worse or better results than our frame- 

work on the benchmark website. 

 

We compare our results with RF in the next subsection, then 

with DL models in Section 5.2. Next, we do a summary draw- 

ing at the end of Section 5.3 for future work. 

 
5.1 Comparing with RF 

 
According to the benchmark explanation (Kölle et al., 2021), 

our approach and the RF on the benchmark share a similar ap- 

proach, multi-scale feature extraction then using a ML classi- 

fier.   Differences were in multi-scale levels, feature sets, and 

ML classifier. 

 

Taking into account the global scores produced from the confu- 

sion matrix of the two approaches, our framework improves the 

F1 scores  1% over RF and passes by a narrow margin in over- 

all accuracy. Moreover, in class level F1 scores, our framework 

is superseding the RF in almost all classes; we have similar res- 

ults for the class of chimney, and RF has better F1 scores in 

shrub and gravel classes. 

 

The reason behind that is that our feature set includes only 

height information coming from the neighborhood search, but 

RF takes the height features from the digital elevation model, 

which makes the feature set more distinctive. Since we would 

like to see the effect of the classifier, we used only basic height 

models with more features, it is clear that the result would be 

better compared to RF. As a drawback, we used eight scales, 

whereas RF has four scales. 

 

We can conclude that gradient boosting machines have reached 

better results than RF even with basic but more multi-scale fea- 

tures. However, a comprehensive study of ablation will allow 

us to understand which part of the framework contributes more 

to the results. 

 
5.2 Comparing with DL Models 

 
In this subsection, we compare our results with DL models from 

the baseline paper (Kölle et al., 2021), namely Sparse Convo- 

lution Neural Network, which is based on voxelization and 3D 

CNN approach, PointNet++, which is based on processing raw 

point clouds hierarchically using PointNet at each level, and 

KpConv, which is based on kernel-based convolution on the 

point clouds. In addition to those, we use (Gao et al., 2022) 

for comparison, which uses a type of kernel-based convolution 

but with self-attention modules. 

 

In overall accuracy, the result of our framework is on the same 

page as the others. On the other hand, in average F1 scores, 

SCN has the highest score, and our framework is in second 

place. However, it should be noted that KpConv reached 0% 

in chimney, thus considering this our framework actually can- 

not supersede its F1 score. It is clear that our framework su- 

perseeds PN++ and (Gao et al., 2022) in the overall scores. At 

the class level, in contrast, our framework has better results in 
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Figure 7. A general visualization of predicted points (left) and a closer look at the results (right) from the test area 
 

Class SCN RF KpConv (Gao et al., 2022) PN++ Ours 

Low Veg. 92.31 90.36 88.57 87.62 78.11 90.88 

Imp. Surf. 88.14 88.55 88.93 85.62 72.07 89.40 

Vehicle 63.51 66.89 82.10 52.40 31.78 77.28 

Urban Fur. 57.17 51.55 63.89 36.71 13.65 55.76 

Roof 96.86 96.06 97.13 95.48 73.98 97.05 

Facade 83.19 78.47 85.13 69.30 47.79 81.88 

Shrub 68.59 67.25 75.24 47.39 28.34 62.06 

Tree 96.98 95.91 97.38 94.28 71.80 97.10 

Soil/Gravel 44.81 47.91 42.68 25.08 9.65 23.17 

Vert. Surf. 78.20 59.73 80.87 65.94 21.67 80.27 

Chimney 73.61 80.65 0.00 38.59 4.39 80.28 

Mean 76.67 74.85 72.90 63.49 41.20 75.92 

OA 88.42 87.43 87.69 84.20 68.50 87.59 

Table 1. F1 scores for each class and mean F1 and Overall Accuracy. The bold font indicates the first place. Sparse 

Convolutional Network (SCN), RF (RF), and PointNet++(PN++) are from the baseline paper 
 

some classes, but cannot compete with KpConv. In almost all 

classes, KpConv performed better than the rest. 

 
It seems clear that our framework can compete with PN++ but 

not with the KpConv architecture. Additionally, on the website 

there are the best results that have not been published yet. We 

can indicate that our model needs more attention to compete 

with DL models. 

 
5.3 Conclusion 

 
In this study, we used a traditional ML framework for point- 

wise classification of 3D point clouds for a highly dense UAV- 

LiDAR dataset. Because the computational cost is increas- 

ing in highly dense point clouds, we took advantage of multi- 

scale feature extraction for subsampling of the point cloud. 

Moreover, we implement the neighborhood functions on GPU 

and parallel feature calculation on the CPU. After having fea- 

tures, we used a gradient boosting machine classifier, Light- 

GBM, for the classification of point clouds. Our framework 

uses efficiency for high-dense point clouds. 

 
We tested our framework on a publicly open benchmark data- 

set, H3D. Based on the results, our framework can achieve good 

results as well as other traditional ML approaches; however, it 

falls behind DL-based models. It is clear that with more fea- 

tures, the results will improve accuracy. 

As a future study, we have shown that using a traditional ML 

framework can compete with DL models. Adding more feature 

sets is going to help to increase the results, for the large-scale 

high-density point sets, the efficiency needs to be taken into ac- 

count. In addition, integration with traditional ML approaches 

and the DL model is going to change the results positively, as 

well as distinguish the classes. 
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