263 research outputs found

    Helioseismology with PICARD

    Full text link
    PICARD is a CNES micro-satellite launched in June 2010 (Thuillier at al. 2006). Its main goal is to measure the solar shape, total and spectral irradiance during the ascending phase of the activity cycle. The SODISM telescope onboard PICARD also allows us to conduct a program for helioseismology in intensity at 535.7 nm (Corbard et al. 2008). One-minute cadence low-resolution full images are available for a so-called medium-ll program, and high-resolution images of the limb recorded every 2 minutes are used to study mode amplification near the limb in the perspective of g-mode search. First analyses and results from these two programs are presented here.Comment: 6 pages, 6 figures, Eclipse on the Coral Sea: Cycle 24 Ascending, GONG 2012 / LWS/SDO-5 / SOHO 27, November 12 - 16, 2012, Palm Cove, Queensland. Accepted for publication in Journal of Physics Conference Series on March 1st 201

    Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordData availability: The data and analysis code used for this study are available from the corresponding author, upon reasonable request.Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer’s disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5–6 months and 7–8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5–6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.Medical Research Council (MRC)Alzheimer’s Research UKElizabeth Blackwell Institute, University of BristolWellcome Trus

    Creation of multiple nanodots by single ions

    Full text link
    In the challenging search for tools that are able to modify surfaces on the nanometer scale, heavy ions with energies of several 10 MeV are becoming more and more attractive. In contrast to slow ions where nuclear stopping is important and the energy is dissipated into a large volume in the crystal, in the high energy regime the stopping is due to electronic excitations only. Because of the extremely local (< 1 nm) energy deposition with densities of up to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence. Usually, each nanodot is due to the impact of a single ion and the dots are randomly distributed. We demonstrate that multiple periodically spaced dots separated by a few 10 nanometers can be created by a single ion if the sample is irradiated under grazing angles of incidence. By varying this angle the number of dots can be controlled.Comment: 12 pages, 6 figure

    New method of Enhancement using Wavelet Transforms applied to SODISM Telescope

    Get PDF
    yesPICARD is a space-based observatory hosting the Solar Diameter Imager and Surface Mapper (SODISM) telescope, which has continuously observed the Sun from July 2010 and up to March 2014. In order to study the fine structure of the solar surface, it is helpful to apply techniques that enhance the images so as to improve the visibility of solar features such as sunspots or faculae. The objective of this work is to develop an innovative technique to enhance the quality of the SODISM images in the five wavelengths monitored by the telescope at 215.0 nm, 393.37 nm, 535.7 nm, 607.1 nm and 782.2 nm. An enhancement technique using interpolation of the high-frequency sub-bands obtained by Discrete Wavelet Transforms (DWT) and the input image is applied to the SODISM images. The input images are decomposed by the DWT as well as Stationary Wavelet Transform (SWT) into four separate sub-bands in horizontal and vertical directions namely, low-low (LL), low-high (LH), high-low (HL) and high–high (HH) frequencies. The DWT high frequency sub-bands are interpolated by a factor 2. The estimated high frequency sub-bands (edges) are enhanced by introducing an intermediate stage using a stationary Wavelet Transform (SWT), and then all these sub-bands and input image are combined and interpolated with half of the interpolation factor α/2, used to interpolate the high-frequency sub-bands, in order to reach the required size for IDWT processing. Quantitative and visual results show the superiority of the proposed technique over a bicubic image resolution enhancement technique. In addition, filling factors for sunspots are calculated from SODISM images and results are presented in this work
    corecore