6,099 research outputs found

    Magnetic Field Uniformity Across the GF 9-2 YSO, L1082C Dense Core, and GF 9 Filamentary Dark Cloud

    Full text link
    The orientation of the magnetic field (B-field) in the filamentary dark cloud GF 9 was traced from the periphery of the cloud into the L1082C dense core that contains the low-mass, low-luminosity Class 0 young stellar object (YSO) GF 9-2 (IRAS 20503+6006). This was done using SOFIA HAWC+ dust thermal emission polarimetry (TEP) at 216 um in combination with Mimir near-infrared background starlight polarimetry (BSP) conducted at H-band (1.6 um) and K-band (2.2 um). These observations were augmented with published I-band (0.77 um) BSP and Planck 850 um TEP to probe B-field orientations with offset from the YSO in a range spanning 6000 AU to 3 pc. No strong B-field orientation change with offset was found, indicating remarkable uniformity of the B-field from the cloud edge to the YSO environs. This finding disagrees with weak-field models of cloud core and YSO formation. The continuity of inferred B-field orientations for both TEP and BSP probes is strong evidence that both are sampling a common B-field that uniformly threads the cloud, core, and YSO region. Bayesian analysis of Gaia DR2 stars matched to the Mimir BSP stars finds a distance to GF 9 of 270 +/- 10 pc. No strong wavelength dependence of B-field orientation angle was found, contrary to previous claims.Comment: 18 pages, 6 figures ApJ, accepte

    The Vertical Profile of Nitrate in the Lacustrine and Transition Zone Koto Panjang Reservoir Kampar District Riau Province

    Full text link
    This research was carried out in the lacustrine and transition zone of Koto Panjang Reservoir from October - December 2013. Objective of the present research was to find out the vertical profile of nitrate in this reservoir. The research used survey method, samples were taken horizontally in four stations and vertically in five sampling points. The parameters of water quality measured were nitrate, dissolved oxygen (DO), pH, transparancy, temperature and depth. In the lacustrine zone concentration of nitrate in the surface was 0,148 – 0,166 mg/l, in the 2 Secchi depth was 0,16 – 0,168 mg/l, in the 4 Secchi depth was 0,153 – 0,162 mg/l, in the 12 m depth was 0,158 – 0,166 mg/l and in the bottom was 0,17 – 0,192 mg/l. In the transition zone concentration of nitrate in the surface was 0,1525 – 0,155 mg/l, in the 2 Secchi depth was 0,157 – 0,158 mg/l, in the 4 Secchi depth was 0,158 – 0,175mg/l, and in the bottom was 0,176 – 0,185mg/l. The concentration of dissolved oxygen (DO) was in the range of 0,10 – 8,75 mg/l. The value of pH was in the range of 5,4 – 5,9. Transparancy was in the range of 83,8 – 105 cm. Temperature was in the range of 28 – 32,3 oC. Depth was in the range of 9,3 – 22,7 m. The vertical profile of nitrate in the lacustrine and transition zone Koto Panjang reservoir of the present reseach revealed that nitrate concentration in the transition zone was relatively lower than that of lacustrine in the surface layer of the water, but the pattern of vertical nitrate profile in each zone was similar in which it increased with increasing depth. The parameters of water quality were observed still sustained the aquatic organism life

    The bright optical/NIR afterglow of the faint GRB 080710 - Evidence for a jet viewed off axis

    Get PDF
    We investigate the optical/near-infrared light curve of the afterglow of GRB 080710 in the context of rising afterglows. Optical and near-infrared photometry was performed using the seven channel imager GROND and the Tautenburg Schmidt telescope. X-ray data were provided by the X-ray Telescope onboard the Swift satellite. The optical/NIR light curve of the afterglow of GRB 080710 is dominated by an initial increase in brightness, which smoothly turns over into a shallow power law decay. The initially rising achromatic light curve of the afterglow of GRB 080710 can be accounted for with a model of a burst viewed off-axis or a single jet in its pre deceleration phase and in an on-axis geometry. An unified picture of the afterglow light curve and prompt emission properties can be obtained with an off-axis geometry, suggesting that late and shallow rising optical light curves of GRB afterglows might be produced by geometric effects.Comment: 9 pages, 4 figures, accepted by A and

    The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    Get PDF
    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a distant event is rather surprising. The observed gamma-ray variability in the prompt emission together with the redshift suggests a lower limit for the Lorentz factor of the ultra-relativistic ejecta of Gamma > 1090. This value rivals any previous measurements of Gamma in GRBs and strengthens the extreme nature of GRB 080916C.Comment: 6 pages, 5 figures; subm. to A&

    Initial-Phase Spectroscopy as a Control of Entangled Systems

    Full text link
    We introduce the concept of initial-phase spectroscopy as a control of the dynamics of entangled states encoded into a two-atom system interacting with a broadband squeezed vacuum field. We illustrate our considerations by examining the transient spectrum of the field emitted by two systems, the small sample (Dicke) and the spatially extended (non-Dicke) models. It is found that the shape of the spectral components depends crucially on the relative phase between the initial entangled state and the squeezed field. We follow the temporal evolution of the spectrum and show that depending on the relative phase a hole burning can occur in one of the two spectral lines. We compare the transient behavior of the spectrum with the time evolution of the initial entanglement and find that the hole burning can be interpreted as a manifestation of the phenomenon of entanglement sudden death. In addition, we find that in the case of the non-Dicke model, the collective damping rate may act like an artificial tweezer that rotates the phase of the squeezed field.Comment: 20 pages, 9 figure

    The stellar population histories of early-type galaxies. III. The Coma Cluster

    Get PDF
    We present stellar population parameters of twelve early-type galaxies (ETGs) in the Coma Cluster based on spectra obtained using the Low Resolution Imaging Spectrograph on the Keck II Telescope. Our data allow us to examine in detail the zero-point and scatter in their stellar population properties. Our ETGs have SSP-equivalent ages of on average 5-8 Gyr with the models used here, with the oldest galaxies having ages of ~10 Gyr old. This average age is identical to the mean age of field ETGs. Our ETGs span a large range in velocity dispersion but are consistent with being drawn from a population with a single age. Specifically, ten of the twelve ETGs are consistent within their formal errors of having the same age, 5.2+/-0.2 Gyr, over a factor of more than 750 in mass. We therefore find no evidence for downsizing of the stellar populations of ETGs in the core of the Coma Cluster. We suggest that Coma Cluster ETGs may have formed the majority of their mass at high redshifts but suffered small but detectable star formation events at z~0.1-0.3. Previous detections of 'downsizing' from stellar populations of local ETGs may not reflect the same downsizing seen in lookback studies of RSGs, as the young ages of the local ETGs represent only a small fraction of their total masses. (abridged)Comment: 49 pages, 20 figures (19 EPS, 1 JPEG). MNRAS, in press. For version with full resolution of Fig. 1 see http://www.astro.rug.nl/~sctrager/coma.pdf; for Table 2, see http://www.astro.rug.nl/~sctrager/coma_table2.pdf; for Table B3, see http://www.astro.rug.nl/~sctrager/coma_tableB3.pd

    Evidence from K2 for rapid rotation in the descendant of an intermediate-mass star

    Get PDF
    Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 solar-mass main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The Astrophysical Journal Letter

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    The far-infrared view of M87 as seen by the Herschel Space Observatory

    Full text link
    The origin of the far-infrared emission from the nearby radio galaxy M87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We observed M87 with PACS and SPIRE as part of the Herschel Virgo Cluster Survey (HeViCS). We compare the new Herschel data with a synchrotron model based on infrared, submm and radio data to investigate the origin of the far-infrared emission. We find that both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M87.Comment: 4 pages, 2 figures, proceedings IAU Symposium 275 (Jets at all scales
    • …
    corecore