Using patterns in the oscillation frequencies of a white dwarf observed by
K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated
pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy
from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is
a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass
measured for any pulsating white dwarf with known rotation, suggesting a
possible link between high mass and fast rotation. If it is the product of
single-star evolution, its progenitor was a roughly 4.0 solar-mass
main-sequence B star; we know very little about the angular momentum evolution
of such intermediate-mass stars. We explore the possibility that this rapidly
rotating white dwarf is the byproduct of a binary merger, which we conclude is
unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The
Astrophysical Journal Letter