599 research outputs found

    Self Consistent Expansion for the Molecular Beam Epitaxy Equation

    Full text link
    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the non linear molecular beam epitaxy (MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(rr,tt)=2D0rr2ρdδ(tt)D({\vec r - \vec r',t - t'}) = 2D_0 | {\vec r - \vec r'} |^{2\rho - d} \delta ({t - t'}). I find a lower critical dimension dc(ρ)=4+2ρd_c (\rho) = 4 + 2\rho , above, which the linear MBE solution appears. Below the lower critical dimension a r-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe non linear MBE, using a reliable method that proved itself in the past by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system, where DRG failed to do so.Comment: 16 page

    Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Get PDF
    Background: Caenorhabditis elegans gene-based phenotype information dates back to the 1970’s, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results: We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO). The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions: We provide a phenotype ontology (WPO) that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and interoperability across the different Model Organism Databases (MODs) and other biological databases. This standardized phenotype ontology will therefore allow for more complex data queries and enhance bioinformatic analyses

    Diffusive Capture Process on Complex Networks

    Full text link
    We study the dynamical properties of a diffusing lamb captured by a diffusing lion on the complex networks with various sizes of NN. We find that the life time ofalambscalesasN of a lamb scales as \sim N and the survival probability S(N,t)S(N\to \infty,t) becomes finite on scale-free networks with degree exponent γ>3\gamma>3. However, S(N,t)S(N,t) for γ<3\gamma<3 has a long-living tail on tree-structured scale-free networks and decays exponentially on looped scale-free networks. It suggests that the second moment of degree distribution istherelevantfactorforthedynamicalpropertiesindiffusivecaptureprocess.Wenumericallyfindthatthenormalizednumberofcaptureeventsatanodewithdegree is the relevant factor for the dynamical properties in diffusive capture process. We numerically find that the normalized number of capture events at a node with degree k,, n(k),decreasesas, decreases as n(k)\sim k^{-\sigma}.When. When \gamma<3,, n(k)stillincreasesanomalouslyfor still increases anomalously for k\approx k_{max}.Weanalyticallyshowthat. We analytically show that n(k)satisfiestherelation satisfies the relation n(k)\sim k^2P(k)andthetotalnumberofcaptureevents and the total number of capture events N_{tot}isproportionalto is proportional to , which causes the γ\gamma dependent behavior of S(N,t)S(N,t) and $.Comment: 9 pages, 6 figure

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    WormBase 2007

    Get PDF
    WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase now includes the genomic, anatomical and functional information about C. elegans, other Caenorhabditis species and other nematodes. As such, it is a crucial resource not only for C. elegans biologists but the larger biomedical and bioinformatics communities. Coverage of core areas of C. elegans biology will allow the biomedical community to make full use of the results of intensive molecular genetic analysis and functional genomic studies of this organism. Improved search and display tools, wider cross-species comparisons and extended ontologies are some of the features that will help scientists extend their research and take advantage of other nematode species genome sequences

    An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors

    Get PDF
    Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor–acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV–visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10–2 cm2/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%

    Toward an interactive article: integrating journals and biological databases.

    Get PDF
    BACKGROUND: Journal articles and databases are two major modes of communication in the biological sciences, and thus integrating these critical resources is of urgent importance to increase the pace of discovery. Projects focused on bridging the gap between journals and databases have been on the rise over the last five years and have resulted in the development of automated tools that can recognize entities within a document and link those entities to a relevant database. Unfortunately, automated tools cannot resolve ambiguities that arise from one term being used to signify entities that are quite distinct from one another. Instead, resolving these ambiguities requires some manual oversight. Finding the right balance between the speed and portability of automation and the accuracy and flexibility of manual effort is a crucial goal to making text markup a successful venture. RESULTS: We have established a journal article mark-up pipeline that links GENETICS journal articles and the model organism database (MOD) WormBase. This pipeline uses a lexicon built with entities from the database as a first step. The entity markup pipeline results in links from over nine classes of objects including genes, proteins, alleles, phenotypes and anatomical terms. New entities and ambiguities are discovered and resolved by a database curator through a manual quality control (QC) step, along with help from authors via a web form that is provided to them by the journal. New entities discovered through this pipeline are immediately sent to an appropriate curator at the database. Ambiguous entities that do not automatically resolve to one link are resolved by hand ensuring an accurate link. This pipeline has been extended to other databases, namely Saccharomyces Genome Database (SGD) and FlyBase, and has been implemented in marking up a paper with links to multiple databases. CONCLUSIONS: Our semi-automated pipeline hyperlinks articles published in GENETICS to model organism databases such as WormBase. Our pipeline results in interactive articles that are data rich with high accuracy. The use of a manual quality control step sets this pipeline apart from other hyperlinking tools and results in benefits to authors, journals, readers and databases.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks

    Get PDF
    The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described

    Statistical mechanics of complex networks

    Get PDF
    Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic

    Search for D0D^{0} decays to invisible final states at Belle

    Full text link
    We report the result from the first search for D0D^0 decays to invisible final states. The analysis is performed on a data sample of 924 fb1\rm{fb}^{-1} collected at and near the Υ(4S)\Upsilon(4S) and Υ(5S)\Upsilon(5S) resonances with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. The absolute branching fraction is determined using an inclusive D0D^0 sample, obtained by fully reconstructing the rest of the particle system including the other charmed particle. No significant signal yield is observed and an upper limit of 9.4×1059.4\times 10^{-5} is set on the branching fraction of D0D^0 to invisible final states at 90\% confidence level.Comment: 17 pages, 4 figures, submitted to PRD(RC
    corecore