3,146 research outputs found

    Confinement effects from interacting chromo-magnetic and axion fields

    Full text link
    We study a non-Abelian gauge theory with a pseudo scalar coupling \phi \epsilon ^{\mu \nu \alpha \beta} F_{\mu \nu}^a F_{\alpha \beta}^a in the case where a constant chromo-electric, or chromo-magnetic, strength expectation value is present. We compute the interaction potential within the framework of gauge-invariant, path-dependent, variables formalism. While in the case of a constant chromo-electric field strength expectation value the static potential remains Coulombic, in the case of a constant chromo-magnetic field strength the potential energy is the sum of a Coulombic and a linear potentials, leading to the confinement of static charges.Comment: 12 pages, no figures, published versio

    Personal factors influence use of cervical cancer screening services: epidemiological survey and linked administrative data address the limitations of previous research

    Get PDF
    National screening programs have reduced cervical cancer mortality; however participation in these programs varies according to women's personal and social characteristics. Research into these inequalities has been limited by reliance on self-reported service use data that is potentially biased, or administrative data that lacks personal detail. We address these limitations and extend existing research by examining rates and correlates of cervical screening in a large epidemiological survey with linked administrative data. MethodsThe cross-sectional sample included 1685 women aged 44-48 and 64-68 years from the Australian Capital Territory and Queanbeyan, Australia. Relative risk was assessed by logistic regression models and summary Population Attributable Risk (PAR) was used to quantify the effect of inequalities on rates of cervical cancer screening. ResultsOverall, 60.5% of women participated in screening over the two-year period recommended by Australian guidelines. Screening participation was associated with having children, moderate or high use of health services, employment, reported lifetime history of drug use, and better physical functioning. Conversely, rates of cervical screening were lower amongst women who were older, reliant on welfare, obese, current smokers, reported childhood sexual abuse, and those with anxiety symptoms. A summary PAR showed that effective targeting of women with readily observable risk-factors (no children, no partner, receiving income support payments, not working, obese, current smoker, anxiety, poor physical health, and low overall health service use) could potentially reduce overall non-participation in screening by 74%. ConclusionsThis study illustrates a valuable method for investigating the personal determinants of health service use by combining representative survey data with linked administrative records. Reliable knowledge about the characteristics that predict uptake of cervical cancer screening services will inform targeted health promotion efforts

    Quantum corrections from a path integral over reparametrizations

    Full text link
    We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson loops in the large-NN QCD and reproduces the area law in the classical limit of large loops. We show that a semiclassical expansion for a rectangular loop captures the L\"uscher term associated with d=26d=26 dimensions and propose a modification of the ansatz which reproduces the L\"uscher term in other dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse advocating the emergence of an analog of the L\"uscher term and verify this result by a direct computation of the determinant of the Laplace operator and the conformal anomaly

    On the integrability of Wilson loops in AdS_5 x S^5: Some periodic ansatze

    Full text link
    Wilson loops are calculated within the AdS/CFT correspondence by finding a classical solution to the string equations of motion in AdS_5 x S^5 and evaluating its action. An important fact is that this sigma-model used to evaluate the Wilson loops is integrable, a feature that has gained relevance through the study of spinning strings carrying large quantum numbers and spin-chains. We apply the same techniques used to solve the equations for spinning strings to find the minimal surfaces describing a wide class of Wilson loops. We focus on different cases with periodic boundary conditions on the AdS_5 and S^5 factors and find a rich array of solutions. We examine the different phases that appear in the problem and comment on the applicability of integrability to the general problem.Comment: LaTex, 49 pages, 8 figure

    Critical Boundary Conditions for the Effective String

    Full text link
    Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around the colour flux tube, produces at the quantum level a universal free fermion string with a boundary phase nu=1/4. This coincides with a model proposed some time ago in order to fit Monte Carlo data of 3D and 4D Lattice gauge systems better. A universal value of the thickness of the colour flux tube is predicted.Comment: 9 pages + 1 figur

    Hadron Correlators and the Structure of the Quark Propagator

    Get PDF
    The structure of the quark propagator of QCDQCD in a confining background is not known. We make an Ansatz for it, as hinted by a particular mechanism for confinement, and analyze its implications in the meson and baryon correlators. We connect the various terms in the K\"allen-Lehmann representation of the quark propagator with appropriate combinations of hadron correlators, which may ultimately be calculated in lattice QCDQCD. Furthermore, using the positivity of the path integral measure for vector like theories, we reanalyze some mass inequalities in our formalism. A curiosity of the analysis is that, the exotic components of the propagator (axial and tensor), produce terms in the hadron correlators which, if not vanishing in the gauge field integration, lead to violations of fundamental symmetries. The non observation of these violations implies restrictions in the space-time structure of the contributing gauge field configurations. In this way, lattice QCDQCD can help us analyze the microscopic structure of the mechanisms for confinement.Comment: 12 pp in LaTeX, preprint Univ. of Valencia, FTUV/94-16, IFIC/94-15. To appear in Z.Phys.

    Nucleation of quark matter bubbles in neutron stars

    Full text link
    The thermal nucleation of quark matter bubbles inside neutron stars is examined for various temperatures which the star may realistically encounter during its lifetime. It is found that for a bag constant less than a critical value, a very large part of the star will be converted into the quark phase within a fraction of a second. Depending on the equation of state for neutron star matter and strange quark matter, all or some of the outer parts of the star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not included) available upon request from [email protected]

    AdS/CFT and Strong Subadditivity of Entanglement Entropy

    Full text link
    Recently, a holographic computation of the entanglement entropy in conformal field theories has been proposed via the AdS/CFT correspondence. One of the most important properties of the entanglement entropy is known as the strong subadditivity. This requires that the entanglement entropy should be a concave function with respect to geometric parameters. It is a non-trivial check on the proposal to see if this property is indeed satisfied by the entropy computed holographically. In this paper we examine several examples which are defined by annuli or cusps, and confirm the strong subadditivity via direct calculations. Furthermore, we conjecture that Wilson loop correlators in strongly coupled gauge theories satisfy the same relation. We also discuss the relation between the holographic entanglement entropy and the Bousso bound.Comment: 29 pages, harvmac, 7 figures, references adde

    A Gauge-invariant Analysis of Magnetic Fields in General Relativistic Cosmology

    Get PDF
    We provide a fully general-relativistic treatment of cosmological perturbations in a universe permeated by a large-scale primordial magnetic field, using the Ellis-Bruni gauge-invariant formalism. The exact non-linear equations for general relativistic magnetohydrodynamic evolution are derived. A number of applications are made: the behaviour of small perturbations to Friedmann universes are studied; a comparison is made with earlier Newtonian treatments of cosmological perturbations and some effects of inflationary expansion are examined.Comment: 31 pages, Latex, Submitted to Classical and Quantum Gravit

    Correlator of Fundamental and Anti-symmetric Wilson Loops in AdS/CFT Correspondence

    Full text link
    We study the two circular Wilson loop correlator in which one is of anti-symmetric representation, while the other is of fundamental representation in 4-dimensional N=4{\cal N}=4 super Yang-Mills theory. This correlator has a good AdS dual, which is a system of a D5-brane and a fundamental string. We calculated the on-shell action of the string, and clarified the Gross-Ooguri transition in this correlator. Some limiting cases are also examined.Comment: 22 pages, 5 figures, v2: typos corrected, v3: final version in JHE
    • …
    corecore