52 research outputs found

    Aerosol-ozone correlations during dust transport episodes

    Get PDF
    Its location in the Mediterranean region and its physical characteristics render Mt. Cimone (44&deg;11&prime; N, 10&deg;42&prime; E), the highest peak of the Italian northern Apennines (2165 m asl), particularly suitable to study the transport of air masses from the north African desert area to Europe. During these northward transports 12 dust events were registered in measurements of the aerosol concentration at the station during the period June&ndash;December 2000, allowing the study of the impact of mineral dust transports on free tropospheric ozone concentrations, which were also measured at Mt. Cimone. Three-dimensional backward trajectories were used to determine the air mass origin, while TOMS Aerosol Index data for the Mt. Cimone area were used to confirm the presence of absorbing aerosol over the measurement site. <P style='line-height: 20px;'> A trajectory statistical analysis allowed identifying the main source areas of ozone and aerosols. The analysis of these back trajectories showed that central Europe and north and central Italy are the major pollution source areas for ozone and fine aerosol, whereas the north African desert regions were the most important source areas for coarse aerosol and low ozone concentrations. During dust events, the Mt. Cimone mean volume concentration for coarse particles was 6.18 &micro;m<sup>3</sup>/cm<sup>3</sup> compared to 0.63 &micro;m<sup>3</sup>/cm<sup>3</sup> in dust-free conditions, while the ozone concentrations were 4% to 21% lower than the monthly mean background values. Our observations show that surface ozone concentrations were lower than the background values in air masses coming from north Africa, and when these air masses were also rich in coarse particles, the lowest ozone values were registered. Moreover, preliminary results on the possible impact of the dust events on PM<sub>10</sub> and ozone values measured in Italian urban and rural areas showed that during the greater number of the considered dust events, significant PM<sub>10</sub> increases and ozone decreases have occurred in the Po valley

    Pattern and determinants of hospitalization during heat waves: an ecologic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have investigated mortality during a heatwave, while few have quantified heat associated morbidity. Our aim was to investigate the relationship between hospital admissions and intensity, duration and timing of heatwave across the summer months.</p> <p>Methods</p> <p>The study area (Veneto Region, Italy) holds 4577408 inhabitants (on January 1<sup>st</sup>, 2003), and is subdivided in seven provinces with 60 hospitals and about 20000 beds for acute care. Five consecutive heatwaves (three or more consecutive days with Humidex above 40°C) occurred during summer 2002 and 2003 in the region. From the regional computerized archive of hospital discharge records, we extracted the daily count of hospital admissions for people aged ≥75, from June 1 through August 31 in 2002 and 2003. Among people aged over 74 years, daily hospital admissions for disorders of fluid and electrolyte balance, acute renal failure, and heat stroke (grouped in a single nosologic entity, heat diseases, HD), respiratory diseases (RD), circulatory diseases (CD), and a reference category chosen a priori (fractures of the femur, FF) were independently analyzed by Generalized Estimating Equations.</p> <p>Results</p> <p>Heatwave duration, not intensity, increased the risk of hospital admissions for HD and RD by, respectively, 16% (p < .0001) and 5% (p < .0001) with each additional day of heatwave duration. At least four consecutive hot humid days were required to observe a major increase in hospital admissions, the excesses being more than twofold for HD (p < .0001) and about 50% for RD (p < .0001). Hospital admissions for HD peaked equally at the first heatwave (early June) and last heatwave (August) in 2004 as did RD. No correlation was found for FF or CD admissions.</p> <p>Conclusion</p> <p>The first four days of an heatwave had only minor effects, thus supporting heat health systems where alerts are based on duration of hot humid days. Although the finding is based on a single late summer heatwave, adaptations to extreme temperature in late summer seem to be unlikely.</p

    Bioclimatic characterisation of an urban area: a case study in Bologna (Italy)

    No full text
    Summer bioclimatic discomfort is a significant public health problem. Bioclimatic characterisations of populations living in urban areas are usually very poor, although the risks are relatively higher in cities because of the phenomenon known as the “urban heat island”. We compared airport, rural, and urban bioclimatic conditions in terms of apparent temperature, Thom index, and temperature alone in several sites within a radius of approximately 25 km from the city of Bologna (Italy). The comparison between meteorological monitoring stations within and near the urban area showed the large impact of the urban heat island effect. Nighttime data showed the largest differences among the investigated sites. Minimum apparent temperatures at rural stations were about 3.5°C lower than the urban 30 m reference station, and 6°C lower than the 2 m urban site. The 2 m apparent temperature values within the urban area were several degrees higher (typically 2°C) than those taken above the roof, both for minimum and maximum values. Temporal trends in the different sites were highly correlated (generally above 0.90), but regression residuals were sometimes quite large. Finally, epidemiological implications are briefly addressed

    Intercomparison of two models, ETA and RAMS, with TRACT field campaign data

    No full text
    In this work a model intercomparison between RAMS and ETA models is carried out, with the aim of evaluating the quality and accuracy of these mesoscale models in reproducing the time evolution of the meteorology in real complex terrain. This is of great importance not only for meteorological forecast but also for air quality assessment. Numerical simulations are performed to reproduce the mean variables' fields and to compare them with measurements collected during the field campaign TRACT. The domain covers the Rhine valley and surrounding mountainous region and we consider a time period of two days. Results from simulations are compared to observations relative to ground stations and radiosoundings. A qualitative analysis is joined to a quantitative estimation of some reference statistical indexes. Both RAMS and ETA models performances are satisfactory when compared to the measured data and also their relative agreement is good. The mean variable fields are reproduced with a satisfactory degree of reliability, even if the simulated profiles are not able to describe the largest fluctuations of the variables. At the surface stations, the best agreement between predictions and observations is obtained for the wind velocity, while the quality of the results is lower for temperature and humidity

    ETA and RAMS numerical mesoscale simulations at high resolution in complex terrain

    No full text
    An intercomparison between numerical simulations obtained by ETA model and RAMS model during a period of about 48 hours is presented. A nesting procedure was performed, so that the highest horizontal resolution is about 4 km. The domain covers the Rhine Valley and surroundings and the time window is from 00 UTC September 16, to 00 UTC September 18. During this period, the TRACT Field Measurement Campaign was performed, so that further comparisons between simulations and observations are presented, using statistical indices such as root-mean-square error and fractional bias

    Urban Air Pollution Monitoring and Correlation Properties between Fixed-site Stations

    No full text
    The rich regional air-monitoring network of the Emilia- Romagna region of Italy has been used to quantify the spatial variability of the main pollutants within urban environments and to analyze the correlations between stations. The spatial variability of the concentrations of the majority of pollutants within the city was very high, making it difficult to differentiate and characterize the urban environments and to apply legal limits with uniform criteria. On the other hand, the correlations between the fixed-site monitoring stations were high enough for their data to be retained generally very appropriately for controlling temporal trends. Starting from the high correlation level, a procedure was proposed and tested to derive pollution levels, using short-term measurements, such as passive samplers and mobile-station data. The importance of long-term statistics in urban air pollution mapping was emphasized. Treatment of missing data in time series and quality assurance were indicated as possible fields for applications for the correlation properties
    • …
    corecore