42 research outputs found
Supercritical fluid extraction of Eucalyptus globulus bark: a promising approach for triterpenoid production
Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100-200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 degrees C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold
Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose
Non-cellulosic heteropolysaccharides from sugarcane bagasse - Sequential extraction with pressurized hot water and alkaline peroxide at different temperatures
The xylan-rich hemicellulose components of sugarcane bagasse were sequentially extracted with pressurized hot-water extraction (PHWE) and alkaline peroxide. The hemicelluloses were found to contain mainly arabinoxylans with varying substitutions confirmed by different chemical and spectroscopic methods. The arabinoxylans obtained from PHWE were found to be more branched compared to those obtained after alkaline extraction. Sequential extraction could be useful for the isolation of hemicelluloses with different degree of branching, molar mass, and functional groups from sugarcane bagasse, which can be of high potential use for various industrial applications
Advances in the oxidation of of lignan derivatives by homogeneous and heterogeneous rhenium catalysts
Advances in the oxidation of of lignan derivatives by homogeneous and heterogeneous rhenium catalysts
Bio-Based Hydrogels With Ion Exchange Properties Applied to Remove Cu(II), Cr(VI), and As(V) Ions From Water
Hydrogels with ion exchange properties were synthesized from compounds derived from wood biopolymer hemicellulose and from commercial vinyl monomers to be tested as active materials for the removal of Cu(II), Cr(VI), and As(V) ions. The hemicellulose O-acetyl galactoglucomannan (GGM) was used as the precursor material, and through a transesterification reaction, GGM was converted into a macromonomer GGM-glycidyl methacrylate (GGM-GMA). Subsequently, the GGM-GMA macromonomer, containing more than one methacrylate group, was used as a crosslinking agent in the synthesis of hydrogels through free-radical polymerization reactions in combination with a 2-acrylamido-2-methyl-1-propanesulfonic acid monomer to produce a cation exchange hydrogel. Also, (3-acrylamidopropyl)trimethylammonium chloride monomer was applied together with the GGM-GMA to form hydrogels that can be used as anion exchange hydrogel. The hydrogels were characterized by Fourier transform-infrared (FT-IR), H-1-NMR spectroscopy, and thermogravimetric analysis (TGA), as well as derivative thermogravimetry (DTG). The microstructure of the hydrogels was characterized by scanning electron microscopy (SEM) analysis with X-ray microanalysis energy-dispersive spectroscopy (EDS). The results obtained regarding the absorption capacity of the Cu(II), Cr(VI), and As(V) ions were studied as a function of the pH value and the initial concentration of the metal ions in the solutions. Absorption was carried out in consecutive batches, and it was found that the poly(GGM-GMA/AMPSH) hydrogel reached an absorption capacity of 90 mg g(-1) for Cu(II). The poly(GGM-GMA/APTACl) hydrogel reached values of 69 and 60 mg g(-1) for Cr(VI) and As(V) oxyanions, respectively. Tests with polymer blends (mixtures of anionic and cationic hydrogels) were also carried out to remove Cu(II), Cr(VI), and As(V) ions from multi-ionic solutions, obtaining satisfactory results
Synthesis of SET-LRP-induced galactoglucomannan-diblock copolymers
Polysaccharides are biorenewable and biodegradable starting materials for the development of functional materials. The synthesis of a monofunctional macroinitiator for single electron transfer-living radical polymerization was successfully developed from a wood polysaccharide-O-acetyl galactoglucomannan (GGM) using a beforehand synthesized amino-functional -bromoisobutyryl derivative applying reductive amination. The GGM macroinitiator was employed to initiate a controlled radical polymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA), methyl methacrylate (MMA), and N-isopropylacrylamide (NIPAM) using Cu-0/Me-6-Tren as a catalyst. The either charged or amphiphilic GGM-b-copolymers with different chain lengths of the synthetic block were successfully synthesized without prior hydrophobization of the GGM chain and dimethyl sulfoxide (DMSO) or DMSO/water mixtures were used as solvents. This novel synthetic approach may find untapped potentials particularly for the development of polysaccharide-based amphiphilic additives for cosmetics or paints and for the design of novel temperature or pH responsive polymers with such potential applications as in drug delivery systems or in biocomposites
Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans
Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, information is needed on its stability in acidic conditions. The kinetics of acid hydrolysis of GGM was studied at temperatures up to 90 °C in the pH range of 1¿3. Molar mass and molar mass distribution were determined using size exclusion chromatography with multiangle laser light scattering and refractive index detection. The molar mass of GGM decreased considerably with treatment time at temperatures above 70 °C and pH below 2. The molar mass distribution broadened with hydrolysis time. A first-order kinetic model was found to match the acid hydrolysis. The reaction rate constants at various pH values and temperatures were calculated on the basis of the first-order kinetic model. Furthermore, the activation energy, E, was obtained from the Arrhenius plot. The activation energy E was 150 kJ mol¿1 for acid hydrolysis of spruce GGM. The apparent rate constant during acid hydrolysis increased by a factor of 10 with a decrease in pH by 1 unit, regardless of temperature. In addition, gas chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were applied to study the released GGM monomers and oligomers. Keywords: Kinetics; acid hydrolysis; galactoglucomannans; oligosaccharides; stability
