41 research outputs found

    Impact of foot-and-mouth disease on mastitis and culling on a large-scale dairy farm in Kenya

    Get PDF
    Foot and mouth disease (FMD) is a highly transmissible viral infection of cloven hooved animals associated with severe economic losses when introduced into FMD-free countries. Information on the impact of the disease in FMDV-endemic countries is poorly characterised yet essential for the prioritisation of scarce resources for disease control programmes. A FMD (virus serotype SAT2) outbreak on a large-scale dairy farm in Nakuru County, Kenya provided an opportunity to evaluate the impact of FMD on clinical mastitis and culling rate. A cohort approach followed animals over a 12-month period after the commencement of the outbreak. For culling, all animals were included; for mastitis, those over 18 months of age. FMD was recorded in 400/644 cattle over a 29-day period. During the follow-up period 76 animals were culled or died whilst in the over 18 month old cohort 63 developed clinical mastitis. Hazard ratios (HR) were generated using Cox regression accounting for non-proportional hazards by inclusion of time-varying effects. Univariable analysis showed FMD cases were culled sooner but there was no effect on clinical mastitis. After adjusting for possible confounders and inclusion of time-varying effects there was weak evidence to support an effect of FMD on culling (HR = 1.7, 95% confidence intervals [CI] 0.88-3.1, P = 0.12). For mastitis, there was stronger evidence of an increased rate in the first month after the onset of the outbreak (HR = 2.9, 95%CI 0.97-8.9, P = 0.057)

    Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies

    Get PDF
    Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern

    Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.</p> <p>Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses.</p> <p>Methods</p> <p>To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains.</p> <p>Results</p> <p>Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection.</p> <p>Conclusions</p> <p>Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.</p

    Persistent bovine pestivirus infection localized in the testes of an immuno-competent, non-viraemic bull

    No full text
    A post-pubertal bull on an artificial insemination station was found to be persistently shedding bovine viral diarrhoea virus (BVDV) in semen over a period of eleven months, while demonstrating no viraemia. Circulating antibodies to BVDV were consistently high, suggesting that the immune system was challenged repeatedly. Post-mortem findings confirmed that the virus was sequestered in the testes of the bull. It is hypothesized that the BVDV in this immuno-competent bull was protected from the bull's immune response by the blood-testes barrier. The barrier becomes functional only at puberty when tight junctions form between adjacent Sertoli cells, suggesting that this bull became persistently infected with BVDV during puberty

    Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    No full text
    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were constructed, added to milk samples, and co-amplified with viral DNA using the same primers for both templates. Specificity, sensitivity, and reproducibility of the two PCR assays were examined. In both PCR assays, all 31 BHV4 strains examined were scored positive, whereas 14 unrelated viruses scored negative. Sensitivity studies showed that two–ten copies of BHV4 DNA were detectable by the gB-PCR, while one–three copies could be detected by the TK-PCR. For the detection of BHV4 in milk samples, the gB-PCR amplification was found to be ten-times, and the TK-PCR was found to be 55-times more sensitive than virus isolation. BHV4 DNA was detected by gB-PCR and TK-PCR in 93 and 95… respectively, of 61 milk samples collected from cows infected intramammarily with BHV4, while only 61 ere positive by virus isolation. Four out of 48 cows with clinical mastitis were positive for BHV4-gB and BHV4-TK DNA, whereas no BHV4 DNA was detected in milk from control cows. Considerable agreement was seen between the results of the two PCR assays, and both methods were considered as rapid and reliable tests for the screening of BHV4 DNA in bovine milk. The less laborious gB-PCR might be the recommended test of choice for screening large amounts of milk samples for the presence of BHV4

    Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: The new standard?

    Get PDF
    Objectives: We hypothesize that three-dimensional (3D) geometric analyses in weight bearing CT-images of the foot and ankle are more reproducible compared to two-dimensional (2D) analyses. Therefore, we compared 2D and 3D analyses on bones of weight-bearing and non weight-bearing cone-beam CT images of healthy volunteers. Methods: Twenty healthy volunteers (10 male, 10 female, mean age 37.5 years) underwent weight-bearing and non weight-bearing cone-beam CT imaging of both feet. Clinically relevant height and angle measurements were performed in 2D and 3D (for example: cuboid height, calcaneal pitch, talo-calcaneal angle, Meary's angle, intermetatarsal angle). Three-dimensional measurements were obtained using automated software. Intra-observer and inter-observer agreement were evaluated for all 2D measurements. Results: Overall intraclass correlation coefficients (ICC's) were higher than 0.750 for most 2D measurements, ranging from 0.352 to 0.995. Calcaneal pitch, angle between the first metatarsal (MT1) and proximal phalange 1, between the fifth metatarsal (MT5) and the calcaneus and heights of the sesamoid bones, navicular, cuboid and talus decreased during weight-bearing in both 2D and 3D results (p < 0.01). Meary's angle was not statistically different in 2D (p = 0.627) and 3D (p = 0.765). Higher coefficients of variation in 2D geometric analysis parameters (0.27 versus 0.16) indicate that 3D analyses are more precise compared to 2D (p < 0.01). Results of left and right feet are comparable for 2D and 3D analyses. Conclusion: Although 2D and 3D geometrical analyses are fundamentally different, automated 3D analyses are more reproducible and precise compared to 2D analyses. In addition, 3D evaluation better demonstrates differences in bone configurations between weight-bearing and non weight-bearing conditions, which may be of value to demonstrate pathology
    corecore