203 research outputs found

    Idiopathic gastric infarction in childhood

    Full text link
    The case of a 6-year-old female with gastric infarction is presented. Despite a careful evaluation, no etiology could be determined in this child or, retrospectively, in several similar children described by other authors in the past. Vascular compromise was present although it is not possible to know whether this was a primary or a secondary event. It is important to recognize that gastric infarction can occur in children without obvious explanation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47178/1/383_2004_Article_BF00182780.pd

    Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses

    Get PDF
    Phosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C). Long-term warming decreased soil total P pools, likely due to higher outputs of P from soils by increasing net plant P uptake and downward transportation of colloidal and particulate P. Warming increased the sorption strength to more recalcitrant soil P fractions (absorbed to iron oxyhydroxides and clays), thereby further reducing bioavailable P in soil solution. As a response, soil microbes enhanced the production of acid phosphatase, though this was not sufficient to avoid decreases of soil bioavailable P and microbial biomass P (and biotic phosphate immobilization). This study therefore highlights how long-term soil warming triggers changes in biotic and abiotic soil P pools and processes, which can potentially aggravate the P constraints of the trees and soil microbes and thereby negatively affect the C sequestration potential of these forests

    Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

    Get PDF
    Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils and the cleavage of proteins into small peptides and amino acids has been shown to be the rate limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000-km-long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability e.g. by soil protein content. Soil geochemistry was a secondary predictor by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales

    Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

    Get PDF
    Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils, and the cleavage of proteins into small peptides and amino acids has been shown to be the rate-limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000 km long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability, e.g., by soil protein content. Soil geochemistry was a secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.</p

    Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: An interlaboratory comparison of three common measurement approaches

    Get PDF
    Rationale Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3− and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. Methods Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3− and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM-N2O) or N2 (CM-N2), and (c) the denitrifier (DN) methods. Results The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2O performing superior for both NO3− and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3− and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF

    FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo

    Get PDF
    This study aimed to test whether [18F]fluoro-D-glucose (FDG) uptake of tumours measured by positron emission tomography (PET) can be used as surrogate marker to define the optimal biological dose (OBD) of mTOR inhibitors in vivo. Everolimus at 0.05, 0.5, 5 and 15 mg kg−1 per day was administered to gastric cancer xenograft-bearing mice for 23 days and FDG uptake of tumours was measured using PET from day 1 to day 8. To provide standard comparators for FDG uptake, tumour volume, S6 protein phosphorylation, Ki-67 staining and everolimus blood levels were evaluated. Everolimus blood levels increased in a dose-dependent manner but antitumour activity of everolimus reached a plateau at doses ⩾5 mg kg−1 per day (tumour volume treated vs control (T/C): 51% for 5 mg kg−1 per day and 57% for 15 mg kg−1 per day). Correspondingly, doses ⩾5 mg kg−1 per day led to a significant reduction in FDG uptake of tumours. Dose escalation above 5 mg kg−1 per day did not reduce FDG uptake any further (FDG uptake T/C: 49% for 5 mg kg−1 per day and 52% for 15 mg kg−1 per day). Differences in S6 protein phosphorylation and Ki-67 index reflected tumour volume and changes in FDG uptake but did not reach statistical significance. In conclusion, FDG uptake might serve as a surrogate marker for dose finding studies for mTOR inhibitors in (pre)clinical trials

    Upper extremity impairments in women with or without lymphedema following breast cancer treatment

    Get PDF
    Breast-cancer-related lymphedema affects ∼25% of breast cancer (BC) survivors and may impact use of the upper limb during activity. The purpose of this study is to compare upper extremity (UE) impairment and activity between women with and without lymphedema after BC treatment. 144 women post BC treatment completed demographic, symptom, and Disability of Arm-Shoulder-Hand (DASH) questionnaires. Objective measures included Purdue pegboard, finger-tapper, Semmes-Weinstein monofilaments, vibration perception threshold, strength, range of motion (ROM), and volume. Women with lymphedema had more lymph nodes removed (p &lt; .001), more UE symptoms (p &lt; .001), higher BMI (p = .041), and higher DASH scores (greater limitation) (p &lt; .001). For all participants there was less strength (elbow flexion, wrist flexion, grip), less shoulder ROM, and decreased sensation at the medial upper arm (p &lt; .05) in the affected UE. These differences were greater in women with lymphedema, particularly in shoulder abduction ROM (p &lt; .05). Women with lymphedema had bilaterally less elbow flexion strength and shoulder ROM (p &lt; .05). Past diagnosis of lymphedema, grip strength, shoulder abduction ROM, and number of comorbidities contributed to the variance in DASH scores (R 2 of 0.463, p &lt; .001). UE impairments are found in women following treatment for BC. Women with lymphedema have greater UE impairment and limitation in activities than women without. Many of these impairments are amenable to prevention measures or treatment, so early detection by health care providers is essential
    corecore