2,310 research outputs found

    Cosmological models with interacting components and mass-varying neutrinos

    Full text link
    A model for a homogeneous and isotropic spatially flat Universe, composed of baryons, radiation, neutrinos, dark matter and dark energy is analyzed. We infer that dark energy (considered to behave as a scalar field) interacts with dark matter (either by the Wetterich model, or by the Anderson and Carroll model) and with neutrinos by a model proposed by Brookfield et al.. The latter is understood to have a mass-varying behavior. We show that for a very-softly varying field, both interacting models for dark matter give the same results. The models reproduce the expected red-shift performances of the present behavior of the Universe.Comment: 8 pages, 5 figures, to be published in Gravitation and Cosmolog

    Cosmological Constant Problems and Renormalization Group

    Get PDF
    The Cosmological Constant Problem emerges when Quantum Field Theory is applied to the gravitational theory, due to the enormous magnitude of the induced energy of the vacuum. The unique known solution of this problem involves an extremely precise fine-tuning of the vacuum counterpart. We review a few of the existing approaches to this problem based on the account of the quantum (loop) effects and pay special attention to the ones involving the renormalization group.Comment: 12 pages, LaTeX, based on the on the talk at IRGAC-2006 (Barcelona, July 11-15, 2006), misprints corrected, comment on anthropic approach modified, some references added, accepted in Journal of Physics

    First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold

    Get PDF
    We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΦNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‾N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2

    Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector

    Get PDF
    J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511 keV photons via Compton scattering. For scattering angles of about 82 deg (where the best contrast for polarization measurement is theoretically predicted) we find that the single event resolution for the determination of the polarization is about 40 deg (predominantly due to properties of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.Comment: 10 pages, 14 figures, submitted to EPJ

    Addressing quality and usability of surface water bodies in semi-arid regions with mining influences

    Get PDF
    Water resources management has considerable importance, specifically in the context of climate change. This subject has introduced new challenges in semi-arid regions with water quality problems, such as the Iberian Pyrite Belt, which is one of the largest metallogenetic provinces in the world and one of the driest regions in Europe. Positioned in the Mediterranean context, the region has a high density of polymetallic sulphide mines that promote the degradation of water systems. The present study aims to assess the water quality in the Pyrite Belt, considering a total of 34 surface water bodies, including constructed reservoirs, permanent and ephemeral streams, and mining facilities with accumulated water (e.g., pit lakes and mining dams). The water samples were analysed for physico-chemical properties, including field parameters (pH, electrical conductivity), alkalinity/acidity, hardness, anions, and potential toxic elements. The results were used for hydrochemical classifications and the assessment of suitability for public uses. Statistical methods, such as hierarchical cluster analysis and nearest centroid classifier, were used for grouping and evaluating the similarity between water bodies. Two groups were generated from the analysis: i) constructed lakes with alkaline and sodium signatures; and ii) waters suffering from the influence of mining wastes, e.g., showing high acidity, sulphate and metal contents. Therefore, the loss of water quality in the vicinity of mines reflects the impact of acid mine drainage. The methodological approach used may be applied to the integrated management of water resources in regions with mining influences and where it is necessary to combat drought and water scarcity scenarios.Patricia Gomes acknowledge FCT (Science and Technology Foundation, Portugal) by the research fellowship under the POCH (Programa Operacional Capital Humano) supported by the European Social Fund and National Funds of MCTES (Ministerio da Ciencia, Tecnologia e Ensino Superior) with reference SFRH/BD/108887/2015. This work was co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Internacionalizacao) - project ICT (UID/GEO/04683/2013) with reference POCI-01-0145-FEDER-007690 and project Nano-MINENV number 029259

    The Sunrise Mission

    Get PDF
    The first science flight of the balloon-borne \Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is briefly summarized.Comment: 35 pages, 17 figure

    The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results

    Full text link
    The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa

    Forward K+ production in subthreshold pA collisions at 1.0 GeV

    Get PDF
    K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.Comment: 4 pages, 3 figure
    corecore