96 research outputs found

    Prevalence of lameness and claw lesions during different stages in the reproductive cycle of sows and the impact on reproduction results

    Get PDF
    Lameness in sows is an emerging disease condition with major effects on animal welfare and economics. Yet the direct impact on reproduction results remains unclear. The present field study investigated the impact of lameness and claw lesions throughout the reproductive cycle on (re)production results of sows. In five farms, a total of 491 group-housed sows were followed up for a period of one reproductive cycle. Sows were assessed for lameness every time they were moved to another area in the farm. Claw lesions were scored at the beginning and at the end of the cycle. Reproduction results included the number of live-born piglets, stillborn piglets, mummified fetuses and crushed piglets, weaning-to-oestrus interval and the presence of sows not showing oestrus post weaning, returning to service and aborting. Sows that left the group were recorded and the reason was noted. A mean prevalence of lameness of 5.9% was found, although it depended on the time in the productive cycle. The highest percentage of lame sows (8.1%) was found when sows were moved from the post-weaning to the gestation stable. No significant associations were found between lameness and reproduction parameters with the exception of the effect on mummified foetuses. Wall cracks, white line lesions, heel lesions and skin lesions did have an effect on farrowing performance. Of all sows, 22% left the group throughout the study, and almost half of these sows were removed from the farm. Lameness was the second most important reason for culling. Sows culled because of lameness were significantly younger compared with sows culled for other reasons (parity: 2.6 +/- 1.3 v. 4.0 +/- 1.8). In conclusion, the present results indicate that lameness mainly affects farm productivity indirectly through its effect on sow longevity whereas claw lesions directly affect some reproductive parameters. The high percentage of lame sows in the insemination stable indicate that risk factor studies should not only focus on the gestation stable, but also on housing conditions in the insemination stable

    Multivariate analysis of 3D ToF-SIMS images: method validation and application to cultured neuronal networks

    Get PDF
    Advanced data analysis tools are crucial for the application of ToF-SIMS analysis to biological samples. Here, we demonstrate that by using a training set approach principal components analysis (PCA) can be performed on large 3D ToF-SIMS images of neuronal cell cultures. The method readily provides access to sample component information and significantly improves the images’ signal-to-noise ratio (SNR)

    Sensor data classification for the indication of lameness in sheep

    Get PDF
    Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed to determine the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep

    A new demo modelling tool that facilitates model transformations

    Get PDF
    The age of digitization requires rapid design and re-design of enterprises. Rapid changes can be realized using conceptual modelling. The design and engineering methodology for organizations (DEMO) is an established modelling method for representing the organization domain of an enterprise. However, heterogeneity in enterprise design stakeholders generally demand for transformations between conceptual modelling languages. Specifically, in the case of DEMO, a transformation into business process modelling and notation (BPMN) models is desirable to account to both, the semantic sound foundation of the DEMO models, and the wide adoption of the de-facto industry standard BPMN. Model transformation can only be efficiently applied if tool support is available. Our research starts with a state-of-the-art analysis, comparing existing DEMO modelling tools. Using a design science research approach, our main contribution is the development of a DEMO modelling tool on the ADOxx platform. One of the main features of our tool is that it addresses stakeholder heterogeneity by enabling transformation of a DEMO organization construction diagram (OCD) into a BPMN collaboration diagram. A demonstration case shows the feasibility of our newly developed tool.http://www.springer.com/series/7911hj2021Industrial and Systems Engineerin
    corecore