11 research outputs found

    DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology

    The Myogenic Factor Myf5 Supports Efficient Skeletal Muscle Regeneration by Enabling Transient Myoblast Amplification

    No full text
    Abstract The myogenic factor Myf5 defines the onset of myogenesis in mammals during development. Mice lacking both Myf5 and MyoD fail to form myoblasts and are characterized by a complete absence of skeletal muscle at birth. To investigate the function of Myf5 in adult skeletal muscle, we generated Myf5 and mdx compound mutants, which are characterized by constant regeneration. Double mutant mice show an increase of dystrophic changes in the musculature, although these mice were viable and the degree of myopathy was modest. Myf5 mutant muscles show a small decrease in the number of muscle satellite cells, which was within the range of physiological variations. We also observed a significant delay in the regeneration of Myf5 deficient skeletal muscles after injury. Interestingly, Myf5 deficient skeletal muscles were able to even out this flaw during the course of regeneration, generating intact muscles 4 weeks after injury. Although we did not detect a striking reduction of MyoD positive activated myoblasts or of Myf5-LacZ positive cells in regenerating muscles, a clear decrease in the proliferation rate of satellite cell-derived myoblasts was apparent in satellite cell-derived cultures. The reduction of the proliferation rate of Myf5 mutant myoblasts was also reflected by a delayed transition from proliferation to differentiation, resulting in a reduced number of myotube nuclei after 6 and 7 days of culture. We reason that Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Disclosure of potential conflicts of interest is found at the end of this article
    corecore