13,896 research outputs found
Dust in the Photospheric Environment II. Effect on the Near Infrared Spectra of L and T Dwarfs
We report an attempt to interpret the spectra of L and T dwarfs with the use
of the Unified Cloudy Model (UCM). For this purpose, we extend the grid of the
UCMs to the cases of log g = 4.5 and 5.5. The dust column density relative to
the gas column density in the observable photosphere is larger at the higher
gravities, and molecular line intensity is generally smaller at the higher
gravities. The overall spectral energy distributions (SEDs) are f_{J} < f_{H} <
f_{K} in middle and late L dwarfs, f_{J} f_{K} in early T dwarfs (L/T
transition objects), and finally f_{J} > f_{H} > f_{K} in middle and late T
dwarfs, where f_{J}, f_{H}, and f_{K} are the peak fluxes at J, H, and K bands,
respectively, in f_{nu} unit. This tendency is the opposite to what is expected
for the temperature effect, but can be accounted for as the effect of thin dust
clouds formed deep in the photosphere together with the effect of the gaseous
opacities including H_2 (CIA), H_2O, CH_4, and K I. Although the UCMs are
semi-empirical models based on a simple assumption that thin dust clouds form
in the region of T_{cr} < T < T_{cond} (T_{cr} = 1800K is an only empirical
parameter while T_{cond} about 2000K is fixed by the thermodynamical data), the
major observations including the overall SEDs as well as the strengths of the
major spectral features are consistently accounted for throughout L and T
dwarfs. In view of the formidable complexities of the cloud formation, we hope
that our UCM can be of some use as a guide for future modelings of the
ultracool dwarfs as well as for interpretation of observed data of L and T
dwarfs.Comment: 43 pages, 13 figures, to appear in Astrophys. J. (May 20, 2004) Some
minor corrections including the address of our web site, which is now read
Backward Clusters, Hierarchy and Wild Sums for a Hard Sphere System in a Low-Density Regime
We study the statistics of backward clusters in a gas of hard spheres at low
density. A backward cluster is defined as the group of particles involved
directly or indirectly in the backwards-in-time dynamics of a given tagged
sphere. We derive upper and lower bounds on the average size of clusters by
using the theory of the homogeneous Boltzmann equation combined with suitable
hierarchical expansions. These representations are known in the easier context
of Maxwellian molecules (Wild sums). We test our results with a numerical
experiment based on molecular dynamics simulations
Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs
We address the problem of how dust forms and how it could be sustained in the
static photospheres of cool dwarfs for a long time. In the cool and dense gas,
dust forms easily at the condensation temperature, T_cond, and the dust can be
in detailed balance with the ambient gas so long as it remains smaller than the
critical radius, r_cr. However, dust will grow larger and segregate from the
gas when it will be larger than r_cr somewhere at the lower temperature, which
we refer to as the critical temperature, T_cr. Then, the large dust grains will
precipitate below the photosphere and only the small dust grains in the region
of T_cr < T < T_cond can be sustained in the photosphere. Thus a dust cloud is
formed. Incorporating the dust cloud, non-grey model photo- spheres in
radiative-convective equilibrium are extended to T_eff as low as 800K. Observed
colors and spectra of cool dwarfs can consistently be accounted for by a single
grid of our cloudy models. This fact in turn can be regarded as supporting
evidence for our basic assumption on the cloud formation.Comment: 50 pages with 14 postscript figures, to be published in Astrophys.
Search for magnetic monopoles using proportional counters filled with helium gas
Slow magnetic monopoles in cosmic rays have been searched at sea level with the detector which consists of seven layers of proportional counters filled with a mixture of He + 20% CH4. The velocities and the energy losses of the incident particles are measured. The upper limit of flux for the monopoles in the velocity range of 1 x 0.001 Beta 4 x 0.001 is 2.78 x 10 to the minus 12th power square centimeters sr sec of 90% confidence level
Global network structure of dominance hierarchy of ant workers
Dominance hierarchy among animals is widespread in various species and
believed to serve to regulate resource allocation within an animal group.
Unlike small groups, however, detection and quantification of linear hierarchy
in large groups of animals are a difficult task. Here, we analyse
aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as
large directed networks. We show that the observed dominance networks are
perfect or approximate directed acyclic graphs, which are consistent with
perfect linear hierarchy. The observed networks are also sparse and random but
significantly different from networks generated through thinning of the perfect
linear tournament (i.e., all individuals are linearly ranked and dominance
relationship exists between every pair of individuals). These results pertain
to global structure of the networks, which contrasts with the previous studies
inspecting frequencies of different types of triads. In addition, the
distribution of the out-degree (i.e., number of workers that the focal worker
attacks), not in-degree (i.e., number of workers that attack the focal worker),
of each observed network is right-skewed. Those having excessively large
out-degrees are located near the top, but not the top, of the hierarchy. We
also discuss evolutionary implications of the discovered properties of
dominance networks.Comment: 5 figures, 2 tables, 4 supplementary figures, 2 supplementary table
Large orbital magnetic moments in carbon nanotubes generated by resonant transport
The nonequilibrium Green's function method is used to study the ballistic
transport in metallic carbon nanotubes when a current is injected from the
electrodes with finite bias voltages. We reveal, both analytically and
numerically, that large loop currents circulating around the tube are induced,
which come from a quantum mechanical interference and are much larger than the
current along the tube axis when the injected electron is resonant with a
time-reversed pair of degenerate states, which are, in fact, inherent in the
zigzag and chiral nanotubes. This results in large orbital magnetic moments,
making the nanotube a molecular solenoid.Comment: 5 pages, 4 figures; typos correcte
Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow
Little is known about morphological instability of a solidification front
during the crystal growth of a thin film of flowing supercooled liquid with a
free surface: for example, the ring-like ripples on the surface of icicles. The
length scale of the ripples is nearly 1 cm. Two theoretical models for the
ripple formation mechanism have been proposed. However, these models lead to
quite different results because of differences in the boundary conditions at
the solid-liquid interface and liquid-air surface. The validity of the
assumption used in the two models is numerically investigated and some of the
theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure
- …
